Predictive Structure-Reactivity Models for Rapid Screening of Pt-Based Multimetallic Electrocatalysts for the Oxygen Reduction Reaction

被引:125
|
作者
Xin, Hongliang [1 ]
Holewinski, Adam [1 ]
Linic, Suljo [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
来源
ACS CATALYSIS | 2012年 / 2卷 / 01期
基金
美国国家科学基金会;
关键词
density functional calculations; fuel cells; platinum; rapid screening; alloys; oxygen reduction reaction; TRANSITION-METAL-ALLOYS; MONOLAYER ELECTROCATALYSTS; ELECTRONIC-STRUCTURE; BIMETALLIC SURFACES; PT(111); STABILITY;
D O I
10.1021/cs200462f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the immense phase space of potential alloy catalysts, any rigorous screening for optimal alloys requires simple and accurate predictive structure reactivity relationships. Herein, we have developed a model that allows us to accurately predict variations in adsorption energy on alloy surfaces based on easily accessible physical characteristics of the metal elements that form the alloy mainly their electro-negativity, atomic radius, and the spatial extent of valence orbitals. We have developed a scheme relating the geometric structure and local chemical environment of active Pt sites to the local chemical reactivity of the sites in the electrochemical oxygen reduction reaction (ORR). The accuracy of the model was verified with density functional theory (DFT) calculations. The model allows us to screen through large libraries of Pt alloys and identify many potentially promising ORR alloy catalysts. Some of these materials have previously been tested experimentally and shown improved performance compared to pure Pt. Since the model is grounded on validated theories of chemisorption on metal surfaces, it can be used to identify the critical physical features that characterize an optimal alloy electrocatalyst for ORR and propose how these features can be engineered.
引用
收藏
页码:12 / 16
页数:5
相关论文
共 50 条
  • [1] A review of Pt-based electrocatalysts for oxygen reduction reaction
    Changlin Zhang
    Xiaochen Shen
    Yanbo Pan
    Zhenmeng Peng
    Frontiers in Energy, 2017, 11 : 268 - 285
  • [2] Analyses of Oxygen Reduction Reaction at Pt-Based Electrocatalysts
    Watanabe, Masahiro
    Wakisaka, Mitsuru
    Yano, Hiroshi
    Uchida, Hiroyuki
    PROTON EXCHANGE MEMBRANE FUEL CELLS 8, PTS 1 AND 2, 2008, 16 (02): : 199 - +
  • [3] A review of Pt-based electrocatalysts for oxygen reduction reaction
    Zhang, Changlin
    Shen, Xiaochen
    Pan, Yanbo
    Peng, Zhenmeng
    FRONTIERS IN ENERGY, 2017, 11 (03) : 268 - 285
  • [4] Oxygen reduction reaction on nanostructured Pt-based electrocatalysts: A review
    Hussain, Sajid
    Erikson, Heiki
    Kongi, Nadezda
    Sarapuu, Ave
    Solla-Gullon, Jose
    Maia, Gilberto
    Kannan, Arunachala M.
    Alonso-Vante, Nicolas
    Tammeveski, Kaido
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31775 - 31797
  • [5] Strain engineering of Pt-based electrocatalysts for oxygen reaction reduction
    Wang, Zeyu
    Liu, Yanru
    Chen, Shun
    Zheng, Yun
    Fu, Xiaogang
    Zhang, Yan
    Wang, Wanglei
    FRONTIERS IN ENERGY, 2024, 18 (02) : 241 - 262
  • [6] Strain engineering of Pt-based electrocatalysts for oxygen reaction reduction
    Zeyu Wang
    Yanru Liu
    Shun Chen
    Yun Zheng
    Xiaogang Fu
    Yan Zhang
    Wanglei Wang
    Frontiers in Energy, 2024, 18 : 241 - 262
  • [7] Structural evolution of Pt-based oxygen reduction reaction electrocatalysts
    Peng, Jiaheng
    Tao, Peng
    Song, Chengyi
    Shang, Wen
    Deng, Tao
    Wu, Jianbo
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (01) : 47 - 58
  • [8] Recent Advances in Confined Pt-Based Electrocatalysts for Oxygen Reduction Reaction
    Zhang, Chenhao
    Yang, Junhao
    Yang, Chang
    Hu, Hanyu
    Zhang, Qian
    Luo, Guanyu
    Kong, Weijie
    Chen, Yingquan
    Yang, Haiping
    Wang, Deli
    ChemCatChem, 2024, 16 (21)
  • [9] Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction
    Li, Cuiling
    Tan, Haibo
    Lin, Jianjian
    Luo, Xiliang
    Wang, Shengping
    You, Jungmok
    Kang, Yong-Hook
    Bando, Yoshio
    Yamauchi, Yusuke
    Kim, Jeonghun
    NANO TODAY, 2018, 21 : 91 - 105
  • [10] Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation
    Shinozaki, Kazuma
    Morimoto, Yu
    Pivovar, Bryan S.
    Kocha, Shyam S.
    JOURNAL OF POWER SOURCES, 2016, 325 : 745 - 751