Brain-Machine Interface Control Algorithms

被引:45
|
作者
Shanechi, Maryam M. [1 ]
机构
[1] Univ Southern Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
Adaptive estimation; brain-machine interface (BMI); control theory; decoding; neuroprosthetics; POSTERIOR PARIETAL CORTEX; LOCAL-FIELD POTENTIALS; STOCHASTIC OPTIMAL-CONTROL; LOOP DECODER ADAPTATION; COMPUTER INTERFACE; ELECTROCORTICOGRAPHIC SIGNALS; CORTICAL CONTROL; DYNAMIC-ANALYSIS; SPIKING ACTIVITY; NEURAL-CONTROL;
D O I
10.1109/TNSRE.2016.2639501
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor brain-machine interfaces (BMI) allow subjects to control external devices by modulating their neural activity. BMIs record the neural activity, use a mathematical algorithm to estimate the subject's intended movement, actuate an external device, and provide visual feedback of the generated movement to the subject. A critical component of a BMI system is the control algorithm, termed decoder. Significant progress has been made in the design of BMI decoders in recent years resulting in proficient control in non-human primates and humans. In this review article, we discuss the decoding algorithms developed in the BMI field, with particular focus on recent designs that are informed by closed-loop control ideas. A motor BMI can be modeled as a closed-loop control system, where the controller is the brain, the plant is the prosthetic, the feedback is the biofeedback, and the control command is the neural activity. Additionally, compared to other closed-loop systems, BMIs have various unique properties. Neural activity is noisy and stochastic, and often consists of a sequence of spike trains. Neural representations of movement could be non-stationary and change over time, for example as a result of learning. We review recent decoder designs that take these unique properties into account. We also discuss the opportunities that exist at the interface of control theory, statistical inference, and neuroscience to devise a control-theoretic framework for BMI design and help develop the next-generation BMI control algorithms.
引用
收藏
页码:1725 / 1734
页数:10
相关论文
共 50 条
  • [1] Brain-machine interface
    Nair, Prashant
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (46) : 18343 - 18343
  • [2] Subcortical ensemble recordings for the control of a brain-machine interface
    Clayton, Daniel A.
    Hanson, Timothy
    Nicolelis, Miguel A. L.
    Turner, Dennis A.
    NEUROSURGERY, 2007, 61 (01) : 212 - 212
  • [3] Brain-machine interface control via reinforcement learning
    DiGiovanna, Jack
    Mahmoudi, Babak
    Mitzelfelt, Jeremiah
    Sanchez, Justin C.
    Principe, Jose C.
    2007 3RD INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, VOLS 1 AND 2, 2007, : 530 - +
  • [4] Neurorehabilitation with brain-machine interface
    Shindo, Keiichiro
    Ushiba, Junichi
    Liu, Meigen
    NEUROSCIENCE RESEARCH, 2010, 68 : E45 - E45
  • [5] Brain-Machine Interface Systems
    Trajkovic, Ljiljana
    IEEE SYSTEMS MAN AND CYBERNETICS MAGAZINE, 2020, 6 (03): : 4 - 8
  • [6] Standardizing the brain-machine interface
    Peck, Morgen E.
    IEEE SPECTRUM, 2008, 45 (04) : 16 - 16
  • [7] The Brain-Machine Interface, Unplugged
    Patel, Prachi
    IEEE SPECTRUM, 2009, 46 (10) : 13 - 14
  • [8] Translating the Brain-Machine Interface
    Thakor, Nitish V.
    SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (210)
  • [9] Evaluation of spike-detection algorithms for a brain-machine interface application
    Obeid, I
    Wolf, PD
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) : 905 - 911
  • [10] Learning to control a brain-machine interface for reaching and grasping by primates
    Carmena, JM
    Lebedev, MA
    Crist, RE
    O'Doherty, JE
    Santucci, DM
    Dimitrov, DF
    Patil, PG
    Henriquez, CS
    Nicolelis, MAL
    PLOS BIOLOGY, 2003, 1 (02) : 193 - 208