Mean-field description of skyrmion lattice in hexagonal frustrated antiferromagnets

被引:25
|
作者
Utesov, Oleg, I [1 ,2 ,3 ]
机构
[1] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, Gatchina 188300, Russia
[2] St Petersburg State Univ, Dept Phys, St Petersburg 198504, Russia
[3] HSE Univ, St Petersburg Sch Phys Math & Comp Sci, St Petersburg 190008, Russia
基金
俄罗斯科学基金会;
关键词
SUCCESSIVE PHASE-TRANSITIONS; STATES;
D O I
10.1103/PhysRevB.105.054435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple mean-field description of frustrated antiferromagnets on hexagonal lattices, aimed to describe the high-temperature part of the temperature-magnetic field phase diagram, is proposed. It is shown that an interplay between modulation vector symmetry, Zeeman energy, and magnetodipolar interaction leads to stabilization of the triple-Q skyrmion lattice in a certain region of the phase diagram. The corresponding analytical expressions for phase boundaries are derived. The possible relevance to the high-temperature part of the Gd2PdSi3 phase diagram is discussed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A mean-field theory for strongly disordered non-frustrated antiferromagnets
    Weber, Heidrun
    Vojta, Matthias
    EUROPEAN PHYSICAL JOURNAL B, 2006, 53 (02): : 185 - 192
  • [2] BOSONIC MEAN-FIELD THEORY FOR FRUSTRATED HEISENBERG ANTIFERROMAGNETS IN 2 DIMENSIONS
    CHITRA, R
    RAO, S
    SEN, D
    RAO, SS
    PHYSICAL REVIEW B, 1995, 52 (02): : 1061 - 1069
  • [3] A mean-field theory for strongly disordered non-frustrated antiferromagnets
    Heidrun Weber
    Matthias Vojta
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 53 : 185 - 192
  • [4] COMMENT ON A MEAN-FIELD THEORY OF QUANTUM ANTIFERROMAGNETS
    HIRSCH, JE
    TANG, S
    PHYSICAL REVIEW B, 1989, 39 (04): : 2850 - 2851
  • [5] MEAN-FIELD THEORY OF SOME MAGNETIZED ANTIFERROMAGNETS
    GOLDSTEIN, L
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1974, 14 (5-6) : 471 - 499
  • [6] Dynamical mean-field theory for doped antiferromagnets
    Fleck, M
    Liechtenstein, AI
    Oles, AM
    Hedin, L
    Anisimov, VI
    PHYSICAL REVIEW LETTERS, 1998, 80 (11) : 2393 - 2396
  • [7] BOND-OPERATOR REPRESENTATION OF QUANTUM SPINS - MEAN-FIELD THEORY OF FRUSTRATED QUANTUM HEISENBERG ANTIFERROMAGNETS
    SACHDEV, S
    BHATT, RN
    PHYSICAL REVIEW B, 1990, 41 (13): : 9323 - 9329
  • [8] Mean-field description of nuclei
    Buervenich, Thomas J.
    COLLECTIVE MOTION AND PHASE TRANSITIONS IN NUCLEAR SYSTEMS, 2007, : 319 - 336
  • [9] Mean-field lattice trees
    Christian Borgs
    Jennifer Chayes
    Remco van der Hofstad
    Gordon Slade
    Annals of Combinatorics, 1999, 3 (2-4) : 205 - 221
  • [10] Mean-field description of structural phase transitions in a hypercubic lattice model
    Tchouobiap, S. E. Mkam
    Mashiyama, H.
    FERROELECTRICS, 2007, 348 : 533 - 538