SYMBOLIC REGRESSION OF DETERMINISTIC CHAOS

被引:0
|
作者
Brandejsky, Tomas [1 ]
机构
[1] Czech Tech Univ, Fac Transportat Sci, Dept Informat & Telecommun, Prague 11000 1, Czech Republic
关键词
Deterministic chaos; Symbolic regression; Genetic Programming Algorithm; Evolutionary Strategy; Lorenz attractor;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Presented paper deals with problem of chaotic system identification and description using Genetic Programming Algorithm. To prevent random perturbations caused complicated identification of regression model parameters, hybrid GPA-ES model is applied. As a test case, Lorenz attractor data are used and this model is restored from data by above mentioned GPA-ES model. During the work, interesting influence of fitness function computation strategy was identified. The paper concludes by comparison of two possible strategies computation of data in each step of time series when original data are used on the place of initial state and continuous computation of whole time series from single starting point.
引用
收藏
页码:90 / 93
页数:4
相关论文
共 50 条
  • [1] DoME: A deterministic technique for equation development and Symbolic Regression
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Pazos, Alejandro
    [J]. Expert Systems with Applications, 2022, 198
  • [2] FFX: FAST, SCALABLE, DETERMINISTIC SYMBOLIC REGRESSION TECHNOLOGY
    McConaghy, Trent
    [J]. GENETIC PROGRAMMING THEORY AND PRACTICE IX, 2011, : 235 - 260
  • [3] DoME: A deterministic technique for equation development and Symbolic Regression
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Pazos, Alejandro
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 198
  • [4] Deterministic chaos
    Sarlosi, Juraj
    Bocko, Jozef
    Surovec, Robert
    [J]. MODELLING OF MECHANICAL AND MECHATRONIC SYSTEMS, 2014, 96 : 458 - 466
  • [5] DETERMINISTIC CHAOS
    HAKEN, H
    WUNDERLIN, A
    [J]. RECHERCHE, 1990, 21 (225): : 1248 - 1255
  • [6] DETERMINISTIC CHAOS
    GROSSMANN, S
    [J]. NATURWISSENSCHAFTEN, 1981, 68 (06) : 300 - 306
  • [7] Improving Genetic Programming Based Symbolic Regression Using Deterministic Machine Learning
    Icke, Ilknur
    Bongard, Joshua C.
    [J]. 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 1763 - 1770
  • [8] Equation Discovery Using Fast Function Extraction: a Deterministic Symbolic Regression Approach
    Vaddireddy, Harsha
    San, Omer
    [J]. FLUIDS, 2019, 4 (02)
  • [9] Deterministic symbolic regression with derivative information: General methodology and application to equations of state
    Engle, Marissa R.
    Sahinidis, Nikolaos V.
    [J]. AICHE JOURNAL, 2022, 68 (06)
  • [10] The presence of chaos in a deterministic
    Chaparro, Gracidela
    Avila, Roberto
    [J]. CUESTIONES DE FILOSOFIA, 2005, (07): : 58 - 68