Robust frailty modelling using non-proportional hazards models

被引:3
|
作者
Do Ha, Il [3 ]
MacKenzie, Gilbert [1 ,2 ]
机构
[1] Univ Limerick, Ctr Biostat, Dept Math & Stat, Limerick, Ireland
[2] ENSAI, Rennes, France
[3] Daegu Haany Univ, Dept Asset Management, Taegu, South Korea
基金
爱尔兰科学基金会;
关键词
frailtymodels; generalized time-dependent logistic; hierarchical likelihood; non-PH model; random effect; GENERALIZED LINEAR-MODELS; HIERARCHICAL-LIKELIHOOD APPROACH; SURVIVAL ANALYSIS; PROPORTIONAL-HAZARDS; PARAMETER-ESTIMATION; REML ESTIMATION; REGRESSION;
D O I
10.1177/1471082X0801000304
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Correlated survival times can be modelled by introducing a random effect, or frailty component, into the hazard function. For multivariate survival data, we extend a non-proportional hazards (PH) model, the generalized time-dependent logistic survival model, to include random effects. The hierarchical likelihood procedure, which obviates the need for marginalization over the random effect distribution, is derived for this extended model and its properties are discussed. The extended model leads to a robust estimation result for the regression parameters against the misspecification of the form of the basic hazard function or frailty distribution compared to PH-based alternatives. The proposed method is illustrated by two practical examples and a simulation study which demonstrate the advantages of the new model.
引用
收藏
页码:315 / 332
页数:18
相关论文
共 50 条
  • [1] PROPORTIONAL AND NON-PROPORTIONAL SUBDISTRIBUTION HAZARDS REGRESSION USING SAS
    Kohl, Maria
    Leffondre, Karen
    Heinze, Georg
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 : S18 - S18
  • [2] A double-Cox model for non-proportional hazards survival analysis with frailty
    Begun, Alexander
    Kulinskaya, Elena
    Ncube, Njabulo
    [J]. STATISTICS IN MEDICINE, 2023, 42 (18) : 3114 - 3127
  • [3] Robust inference for univariate proportional hazards frailty regression models
    Kosorok, MR
    Lee, BL
    Fine, JP
    [J]. ANNALS OF STATISTICS, 2004, 32 (04): : 1448 - 1491
  • [4] Non-proportional hazards model with a PVF frailty term: application with a melanoma dataset
    Rosa, Karen C.
    Calsavara, Vinicius F.
    Louzada, Francisco
    [J]. JOURNAL OF APPLIED STATISTICS, 2024,
  • [5] Reduced-rank hazard regression for modelling non-proportional hazards
    Perperoglou, Aris
    le Cessie, Saskia
    van Houwelingen, Hans C.
    [J]. STATISTICS IN MEDICINE, 2006, 25 (16) : 2831 - 2845
  • [6] Latent heterogeneity effects in modelling individual hazards: A non-proportional approach
    Guseo, Renato
    [J]. TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2016, 105 : 89 - 93
  • [7] Long-term frailty modeling using a non-proportional hazards model: Application with a melanoma dataset
    Calsavara, Vinicius F.
    Milani, Eder A.
    Bertolli, Eduardo
    Tomazella, Vera
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (08) : 2100 - 2118
  • [8] Robust prediction of the cumulative incidence function under non-proportional subdistribution hazards
    Liu, Qing
    Tang, Gong
    Costantino, Joseph P.
    Chang, Chung-Chou H.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (02): : 127 - 141
  • [9] On proportional reversed hazards frailty models
    Sankaran P.G.
    Gleeja V.L.
    [J]. METRON, 2011, 69 (2) : 151 - 173
  • [10] Proportional hazards models with discrete frailty
    Chrys Caroni
    Martin Crowder
    Alan Kimber
    [J]. Lifetime Data Analysis, 2010, 16 : 374 - 384