THE LEVENBERG-MARQUARDT REGULARIZATION FOR THE BACKWARD HEAT EQUATION WITH FRACTIONAL DERIVATIVE

被引:2
|
作者
Pornsawad, Pornsarp [1 ,4 ]
Bockmann, Christine [2 ,3 ]
Panitsupakamon, Wannapa [1 ,4 ]
机构
[1] Silpakom Univ, Fac Sci, Dept Math, 6 Rachamakka Nai Rd, Mueang Nakhon Pathom Dis 73000, Nakhon Pathom, Thailand
[2] Univ Potsdam, Inst Math, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[3] Alfred Wegener Inst, Helmholtz Ctr Polar & Marine Res, Telegrafenberg A45, D-14473 Potsdam, Germany
[4] Mahidol Univ, Ctr Excellence Math, Rama 6 Rd, Bangkok 10400, Thailand
关键词
  ill-posed problems; time-fractional derivative; backward heat problem; Levenberg-Marquardt method; a posteriori stopping rule; optimal order; RUNGE-KUTTA INTEGRATORS; ASYMPTOTICAL REGULARIZATION; INVERSE PROBLEMS;
D O I
10.1553/etna_vol57s67
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The backward heat problem with time-fractional derivative in Caputo???s sense is studied. The inverse problem is severely ill-posed in the case when the fractional order is close to unity. A Levenberg???Marquardt method with a new a posteriori stopping rule is investigated. We show that optimal order can be obtained for the proposed method under a H??lder-type source condition. Numerical examples for one and two dimensions are provided.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 50 条
  • [1] Algebraic rules for computing the regularization parameter of the Levenberg-Marquardt method
    Karas, Elizabeth W.
    Santos, Sandra A.
    Svaiter, Benar F.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (03) : 723 - 751
  • [2] Convergence properties of Levenberg-Marquardt methods with generalized regularization terms
    Ariizumi, Shumpei
    Yamakawa, Yuya
    Yamashita, Nobuo
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 463
  • [3] Signal Classification Using Bayesian Regularization and Levenberg-Marquardt Algorithm
    Suri, Munish
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, INFORMATICS, COMMUNICATION AND ENERGY SYSTEMS (SPICES), 2017,
  • [4] Adaptive Levenberg-Marquardt Algorithm: A New Optimization Strategy for Levenberg-Marquardt Neural Networks
    Yan, Zhiqi
    Zhong, Shisheng
    Lin, Lin
    Cui, Zhiquan
    [J]. MATHEMATICS, 2021, 9 (17)
  • [5] Iterative algorithm for microwave tomography using Levenberg-Marquardt regularization technique
    Bandyopadhyay, B
    Kundu, A
    Datta, AN
    [J]. INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2005, 43 (09) : 649 - 653
  • [6] Levenberg-Marquardt algorithm with adaptive Tikhonov regularization for bandwidth correction of spectra
    Cui, Hao
    Xia, Guo
    Jin, Shiqun
    Cheng, Lulu
    Bai, Lihao
    Ma, Long
    Fang, Yong
    [J]. JOURNAL OF MODERN OPTICS, 2020, 67 (07) : 661 - 670
  • [7] Levenberg-Marquardt method in Banach spaces with general convex regularization terms
    Jin, Qinian
    Yang, Hongqi
    [J]. NUMERISCHE MATHEMATIK, 2016, 133 (04) : 655 - 684
  • [8] A note on the Levenberg-Marquardt parameter
    Fan, Jinyan
    Pan, Jianyu
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 351 - 359
  • [9] A Parallel Levenberg-Marquardt Algorithm
    Cao, Jun
    Novstrup, Krista A.
    Goyal, Ayush
    Midkiff, Samuel R.
    Caruthers, James M.
    [J]. ICS'09: PROCEEDINGS OF THE 2009 ACM SIGARCH INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, 2009, : 450 - 459
  • [10] Geometric Algebra Levenberg-Marquardt
    De Keninck, Steven
    Dorst, Leo
    [J]. ADVANCES IN COMPUTER GRAPHICS, CGI 2019, 2019, 11542 : 511 - 522