Context-dependent duration modeling

被引:0
|
作者
Willett, D [1 ]
机构
[1] Tem Speech Dialog Syst, Ulm, Germany
关键词
D O I
10.1109/ICSM.2005.15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper proposes a context-dependent duration model and discusses its integration into a first-order hidden Markov model-based speech recognizer. The duration model allows the application of conditional duration probabilities that depend on the durations of neighboring HMM states. This way, it is capable of penalizing or fully preventing unusual durational relations of succeeding states. As the duration model is compiled into a dedicated first-order model topology it can be applied in a single-pass I-best P Viterbi decoder. In addition, this topology facilitates the integration of duration-dependent density functions. In experiments on connected digit recognition we see a relative word error reduction of about 16% with the proposed duration model and another 12% due to duration-dependent densities.
引用
收藏
页码:421 / 424
页数:4
相关论文
共 50 条
  • [1] Performance of connected digit recognizers with context-dependent word duration modeling
    Kwon, OW
    Un, CK
    [J]. APCCAS '96 - IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS '96, 1996, : 243 - 246
  • [2] CONTEXT-DEPENDENT WORD DURATION MODELING FOR KOREAN CONNECTED DIGIT RECOGNITION
    KWON, OW
    UN, CK
    [J]. ELECTRONICS LETTERS, 1995, 31 (19) : 1630 - 1631
  • [3] Context-dependent phoneme duration modeling with tree-based state tying
    Park, SJ
    Koo, MW
    Jhon, CS
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2005, E88D (03): : 662 - 666
  • [4] Context-Dependent Neural Modulations in the Perception of Duration
    Murai, Yuki
    Yotsumoto, Yuko
    [J]. FRONTIERS IN INTEGRATIVE NEUROSCIENCE, 2016, 10
  • [5] System for context-dependent user modeling
    Nurmi, Petteri
    Salden, Alfons
    Lau, Sian Lun
    Suomela, Jukka
    Sutterer, Michael
    Millerat, Jean
    Martin, Miquel
    Lagerspetz, Eemil
    Poortinga, Remco
    [J]. ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2006: OTM 2006 WORKSHOPS, PT 2, PROCEEDINGS, 2006, 4278 : 1894 - 1903
  • [6] Eigentriphones for Context-Dependent Acoustic Modeling
    Ko, Tom
    Mak, Brian
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2013, 21 (06): : 1285 - 1294
  • [7] Context-Dependent Duration Signals in the Primate Prefrontal Cortex
    Genovesio, Aldo
    Seitz, Lucia K.
    Tsujimoto, Satoshi
    Wise, Steven P.
    [J]. CEREBRAL CORTEX, 2016, 26 (08) : 3345 - 3356
  • [8] CONTEXT-DEPENDENT PRONUNCIATION MODELING FOR IRAQI ASR
    Tsakalidis, Stavros
    Prasad, Rohit
    Natarajan, Prem
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 4457 - 4460
  • [9] Preference Modeling with Context-Dependent Salient Features
    Bower, Amanda
    Balzano, Laura
    [J]. 25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [10] EIGENTRIPHONES: A BASIS FOR CONTEXT-DEPENDENT ACOUSTIC MODELING
    Ko, Tom
    Mak, Brian
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4892 - 4895