Learning Low-Dimensional Signal Models

被引:17
|
作者
Carin, Lawrence [1 ]
Baraniuk, Richard G. [2 ]
Cevher, Volkan [2 ,3 ]
Dunson, David [4 ,10 ]
Jordan, Michael I. [5 ,6 ]
Sapiro, Guillermo
Wakin, Michael B. [7 ,8 ,9 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27706 USA
[2] Rice Univ, Houston, TX USA
[3] Univ Maryland, College Pk, MD 20742 USA
[4] Amer Stat Assoc, Alexandria, VA USA
[5] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[7] CALTECH, Pasadena, CA 91125 USA
[8] Univ Michigan, Ann Arbor, MI 48109 USA
[9] Colorado Sch Mines, Div Engn, Golden, CO 80401 USA
[10] Harvard Univ, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
RESTRICTED ISOMETRY PROPERTY; SAMPLING METHODS;
D O I
10.1109/MSP.2010.939733
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sampling, coding, and streaming even the most essential data, e.g., in medical imaging and weather-monitoring applications, produce a data deluge that severely stresses the available analog-to-digital converter, communication bandwidth, and digital-storage resources. Surprisingly, while the ambient data dimension is large in many problems, the relevant information in the data can reside in a much lower dimensional space. © 2006 IEEE.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 50 条
  • [1] Learning Low-Dimensional Models of Microscopes
    Debarnot, Valentin
    Escande, Paul
    Mangeat, Thomas
    Weiss, Pierre
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 178 - 190
  • [2] Low-Dimensional Learning Control using Generic Signal Parametrizations
    Willems, Jeroen
    Kikken, Edward
    Depraetere, Bruno
    [J]. IFAC PAPERSONLINE, 2019, 52 (29): : 280 - 285
  • [3] Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective
    Baraniuk, Richard G.
    Cevher, Volkan
    Wakin, Michael B.
    [J]. PROCEEDINGS OF THE IEEE, 2010, 98 (06) : 959 - 971
  • [4] Learning Low-Dimensional Metrics
    Jain, Lalit
    Mason, Blake
    Nowak, Robert
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [5] Dynamo transition in low-dimensional models
    Verma, Mahendra K.
    Lessinnes, Thomas
    Carati, Daniele
    Sarris, Ioannis
    Kumar, Krishna
    Singh, Meenakshi
    [J]. PHYSICAL REVIEW E, 2008, 78 (03):
  • [6] Low-dimensional supersymmetric lattice models
    Bergner, G.
    Kaestner, T.
    Uhlmann, S.
    Wipf, A.
    [J]. ANNALS OF PHYSICS, 2008, 323 (04) : 946 - 988
  • [7] Learning Low-Dimensional Temporal Representations
    Su, Bing
    Wu, Ying
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [8] Low-Dimensional Learning for Complex Robots
    O'Flaherty, Rowland
    Egerstedt, Magnus
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2015, 12 (01) : 19 - 27
  • [9] Constrained Magnetic Resonance Spectroscopic Imaging by Learning Nonlinear Low-Dimensional Models
    Lam, Fan
    Li, Yahang
    Peng, Xi
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (03) : 545 - 555
  • [10] Low-Dimensional Genotype Embeddings for Predictive Models
    Sultan, Syed Fahad
    Guo, Xingzhi
    Skiena, Steven
    [J]. 13TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, BCB 2022, 2022,