Algebraic dynamics of the lifts of Frobenius

被引:5
|
作者
Xie, Junyi [1 ]
机构
[1] Univ Rennes 1, Inst Rech Math Rennes, CNRS, Batiment 22-23 Campus Beaulieu, Rennes, France
关键词
algebraic dynamics; perfectoid space; MANIN-MUMFORD CONJECTURE; BOGOMOLOV CONJECTURE; POINTS; ENDOMORPHISMS;
D O I
10.2140/ant.2018.12.1715
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the algebraic dynamics of endomorphisms of projective spaces with coefficients in a p-adic field whose reduction in positive characteristic is the Frobenius. In particular, we prove a version of the dynamical Manin-Mumford conjecture and the dynamical Mordell-Lang conjecture for the coherent backward orbits of such endomorphisms. We also give a new proof of a dynamical version of the Tate-Voloch conjecture in this case. Our method is based on the theory of perfectoid spaces introduced by P. Scholze. In the appendix, we prove that under some technical condition on the field of definition, a dynamical system for a polarized lift of Frobenius on a projective variety can be embedded into a dynamical system for some endomorphism of a projective space.
引用
收藏
页码:1715 / 1748
页数:34
相关论文
共 50 条
  • [1] POSITIVITY AND LIFTS OF THE FROBENIUS
    Dupuy, Taylor
    [J]. MATHEMATICAL RESEARCH LETTERS, 2014, 21 (02) : 289 - 295
  • [2] Lie invariant Frobenius lifts
    Buium, Alexandru
    [J]. JOURNAL OF NUMBER THEORY, 2024, 259 : 378 - 418
  • [3] Frobenius lifts and elliptic curves with complex multiplication
    Gurney, Lance
    [J]. ALGEBRA & NUMBER THEORY, 2021, 15 (08) : 1921 - 1942
  • [4] Algebraic Frobenius groups
    Falcone, G
    [J]. FORUM MATHEMATICUM, 2000, 12 (05) : 513 - 544
  • [5] An algebraic approach to lifts of digraphs
    Dalfo, C.
    Fiol, M. A.
    Miller, M.
    Ryan, J.
    Siran, J.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 269 : 68 - 76
  • [6] On -lifting of Frobenius of algebraic surfaces
    Xin, He
    [J]. COLLECTANEA MATHEMATICA, 2016, 67 (01) : 69 - 83
  • [7] Algebraic matroids and Frobenius flocks
    Bollen, Guus P.
    Draisma, Jan
    Pendavingh, Rudi
    [J]. ADVANCES IN MATHEMATICS, 2018, 323 : 688 - 719
  • [8] STRUCTURE OF FROBENIUS ALGEBRAIC GROUPS
    HERTZIG, D
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (03) : 421 - &
  • [9] Frobenius and the derived centers of algebraic theories
    William G. Dwyer
    Markus Szymik
    [J]. Mathematische Zeitschrift, 2017, 285 : 1181 - 1203
  • [10] Frobenius and the derived centers of algebraic theories
    Dwyer, William G.
    Szymik, Markus
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 1181 - 1203