Gamma processes and peaks-over-threshold distributions for time-dependent reliability

被引:159
|
作者
van Noortwijk, J. M.
van der Weide, J. A. M.
Kallen, M. J.
Pandey, M. D.
机构
[1] HKV Consultants, NL-8203 AC Lelystad, Netherlands
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, NL-2600 GA Delft, Netherlands
[3] Univ Waterloo, Dept Civil Engn, Waterloo, ON N2L 3G1, Canada
关键词
deterioration; load; gamma process; peaks-over-threshold distribution; Poisson process; Kac functional equation;
D O I
10.1016/j.ress.2006.11.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the evaluation of structural reliability, a failure is defined as the event in which stress exceeds a resistance that is liable to deterioration. This paper presents a method to combine the two stochastic processes of deteriorating resistance and fluctuating load for computing the time-dependent reliability of a structural component. The deterioration process is modelled as a gamma process, which is a stochastic process with independent non-negative increments having a gamma distribution with identical scale parameter. The stochastic process of loads is generated by a Poisson process. The variability of the random loads is modelled by a peaks-over-threshold distribution (such as the generalised Pareto distribution). These stochastic processes of deterioration and load are combined to evaluate the time-dependent reliability. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1651 / 1658
页数:8
相关论文
共 50 条
  • [1] Estimating Peaks of Stationary Random Processes: A Peaks-over-Threshold Approach
    Duthinh, Dat
    Pintar, Adam L.
    Simiu, Emil
    [J]. ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2017, 3 (04):
  • [2] Peaks-over-threshold stability of multivariate generalized Pareto distributions
    Falk, Michael
    Guillou, Armelle
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (04) : 715 - 734
  • [3] Functional peaks-over-threshold analysis
    de Fondeville, Raphael
    Davison, Anthony C.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (04) : 1392 - 1422
  • [4] Threshold selection for regional peaks-over-threshold data
    Roth, M.
    Jongbloed, G.
    Buishand, T. A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (07) : 1291 - 1309
  • [5] Estimating Peaks of Stationary Random Processes: A Peaks-over-Threshold Approach (vol 3, 2017)
    Duthinh, Dat
    Pintar, Adam L.
    Simiu, Emil
    [J]. ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2019, 5 (02):
  • [6] Spatial extremes and stochastic geometry for Gaussian-based peaks-over-threshold processes
    Di Bernardino, Elena
    Estrade, Anne
    Opitz, Thomas
    [J]. EXTREMES, 2024, 27 (03) : 397 - 435
  • [7] A PEAKS-OVER-THRESHOLD ANALYSIS OF EXTREME WIND SPEEDS
    ROSS, WH
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1987, 15 (04): : 328 - 335
  • [8] High-dimensional peaks-over-threshold inference
    de Fondeville, R.
    Davison, A. C.
    [J]. BIOMETRIKA, 2018, 105 (03) : 575 - 592
  • [9] Peaks-Over-Threshold Modeling Under Random Censoring
    Beirlant, Jan
    Guillou, Armelle
    Toulemonde, Gwladys
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (07) : 1158 - 1179
  • [10] A regional peaks-over-threshold model in a nonstationary climate
    Roth, M.
    Buishand, T. A.
    Jongbloed, G.
    Tank, A. M. G. Klein
    van Zanten, J. H.
    [J]. WATER RESOURCES RESEARCH, 2012, 48