Molecular diversity and physical mapping of 5S rDNA in wild, and cultivated oat grasses (Poaceae: Aveneae)

被引:48
|
作者
Röser, M
Winterfeld, G
Grebenstein, B
Hemleben, V
机构
[1] Univ Halle Wittenberg, Inst Geobot, D-06099 Halle, Germany
[2] Univ Tubingen, Inst Gen Genet, D-72076 Tubingen, Germany
关键词
Poaceae; Aveneae; Avena; Helictotrichon; Pseudarrhenatherum; Lagurus; Trisetum; 5S rDNA; transcription; pseudogene; polyploidy; DNA in situ hybridization; FISH;
D O I
10.1006/mpev.2001.1003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
5S rDNA repeats studied in five genera of Aveneae have lengths between 285 and 329 bp (Avena sativa, Avena macrostachya, 26 species of Helictotrichon, Pseudarrhenatherum longifolium, Lagurus ovatus, and Trisetum spicatum). In only a single species (Helictotrichon aetolicum) an additional repeat of 456 bp occurs infrequently. Variation is largely due to insertions or deletions in the nontranscribed spacer as determined from sequences of 163 independent clones. The 5S gene of the Aveneae studied is conserved in length and sequence except for Helictotrichon bromoides and Helictotrichon marginatum in which duplications occur at two different sites. This new type of duplication and all duplications reported to date in 5S genes of angiosperms are shown to center on defined palindromic sequences. The "uncommon" 5S gene sequences detected in some Aveneae are not necessarily nonfunctional as pseudogenes because the essential features of the internal control region are maintained even after such duplication events. In each instance such gene sequences have spacers with unmodified structure, indicating that change in gene sequence is not necessarily coupled with change in adjacent spacers. The value of 5S spacer sequences for genomic identifications in Aveneae is exemplified in A. macrostachya (perennial), A, sativa (annual), and several diploid taxa of the genus Helictotrichon. (C) 2001 Academic Press.
引用
收藏
页码:198 / 217
页数:20
相关论文
共 50 条
  • [1] Molecular diversity of the 5S rRNA gene and genomic relationships in the genus Avena (Poaceae: Aveneae)
    Peng, Yuan-Ying
    Wei, Yu-Ming
    Baum, Bernard R.
    Zheng, You-Liang
    GENOME, 2008, 51 (02) : 137 - 154
  • [2] Chromosome evolution in wild oat grasses (Aveneae) revealed by molecular phylogeny
    Winterfeld, Grit
    Doering, Elke
    Roeser, Martin
    GENOME, 2009, 52 (04) : 361 - 380
  • [4] Physical mapping of the 5S and 45S rDNA in teosintes
    Han, YH
    Li, LJ
    Song, YC
    Li, ZY
    Xiong, ZY
    Li, DY
    HEREDITAS, 2002, 137 (01) : 16 - 19
  • [5] Molecular Cytogenetic Analysis of Cucumis Wild Species Distributed in Southern Africa: Physical Mapping of 5S and 45S rDNA with DAPI
    Yagi, Kouhei
    Pawelkowicz, Magdalena
    Osipowski, Pawel
    Siedlecka, Ewa
    Przybecki, Zbigniew
    Tagashira, Norikazu
    Hoshi, Yoshikazu
    Malepszy, Stefan
    Plader, Wojciech
    CYTOGENETIC AND GENOME RESEARCH, 2015, 146 (01) : 80 - 87
  • [6] The 5S rDNA units in Kengyilia (Poaceae: Triticeae):: diversity of the nontranscribed spacer and genomic relationships
    Baum, BR
    Bailey, LG
    CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 2000, 78 (12): : 1571 - 1579
  • [7] Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes
    Taketa, S
    Harrison, GE
    Heslop-Harrison, JS
    THEORETICAL AND APPLIED GENETICS, 1999, 98 (01) : 1 - 9
  • [8] Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes
    S. Taketa
    G. E. Harrison
    J. S. Heslop-Harrison
    Theoretical and Applied Genetics, 1999, 98 : 1 - 9
  • [9] Chromosomal diversity in Hypostomus (Siluriformes, Loricariidae) with emphasis on physical mapping of 18S and 5S rDNA sites
    Traldi, J. B.
    Blanco, D. R.
    Vicari, M. R.
    Martinez, J. F.
    Lui, R. L.
    Barros, A. V.
    Artoni, R. F.
    Moreira-Filho, O.
    GENETICS AND MOLECULAR RESEARCH, 2013, 12 (01): : 463 - 471
  • [10] Karyotype of asparagus by physical mapping of 45S and 5S rDNA by FISH
    CHUAN-LIANG DENG
    RUI-YUN QIN
    NING-NA WANG
    YING CAO
    JUN GAO
    WU-JUN GAO
    LONG-DOU LU
    Journal of Genetics, 2012, 91 : 209 - 212