A physically consistent stochastic model to observe oil spills and strong scatters on SLC SAR images

被引:3
|
作者
Migliaccio, Maurizio [1 ]
Ferrara, Giuseppe [1 ]
Gambardella, Attilio [1 ]
Nunziata, Ferdinando [1 ]
Sorrentino, Antonio [1 ]
机构
[1] Univ Naples Parthenope, Dipartimento Tecnol, I-80133 Naples, Italy
关键词
component; speckle; SAR; sea; generalized K pdf;
D O I
10.1109/IGARSS.2007.4423049
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A speckle model to characterize low backscatter areas and areas with strong scatterers in marine SLC SAR images is presented. The model allows using high resolution speckled SAR images instead of dealing with multi-look SAR images where, at the expense of a poorer spatial resolution, the speckle is mitigated. The new approach is based on the use of the three parameters of the generalized K probability density function. This speckle model embodies the Rayleigh, the Rice and the K-distribution scattering scenes, which are descriptor of scenes dominated by Bragg scattering, scenes in which a dominant scatter is present and scenes with a non-Gaussian signal statistic, respectively. A large data-set of ERS 1/2 SLC SAR images, provided by the ESA under the Project CIP-2769, is employed. Results show the effectiveness of the approach.
引用
收藏
页码:1322 / 1325
页数:4
相关论文
共 50 条
  • [1] A physically consistent speckle model for marine SLC SAR images
    Migliaccio, Maurizio
    Ferrara, Giuseppe
    Gambardella, Attilio
    Nunziata, Ferdinando
    Sorrentino, Antonio
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2007, 32 (04) : 839 - 847
  • [2] SAR polarimetry to observe oil spills
    Migliaccio, Maurizio
    Gambardella, Attilio
    Tranfaglia, Massimo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (02): : 506 - 511
  • [3] A study on the use of SAR polarimetric data to observe oil spills
    Migliaccio, M
    Tranfaglia, M
    OCEANS 2005 - EUROPE, VOLS 1 AND 2, 2005, : 196 - 200
  • [4] Stochastic models of SLC HR SAR images
    Soccorsi, Matteo
    Datcu, Mihai
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3887 - 3890
  • [5] A physical approach for the observation of oil spills in SAR images
    Migliaccio, M
    Tranfaglia, M
    Ermakov, SA
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2005, 30 (03) : 496 - 507
  • [6] Automatic detection of oil spills from SAR images
    Nirchio, F
    Sorgente, M
    Giancaspro, A
    Biamino, W
    Parisato, E
    Ravera, R
    Trivero, P
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (06) : 1157 - 1174
  • [7] Automatic detection of oil spills in ERS SAR images
    Solberg, AHS
    Storvik, G
    Solberg, R
    Volden, E
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (04): : 1916 - 1924
  • [8] Fast Detection of Oil Spills and Ships Using SAR Images
    Lupidi, Alberto
    Stagliano, Daniele
    Martorella, Marco
    Berizzi, Fabrizio
    REMOTE SENSING, 2017, 9 (03):
  • [9] Segmentation of oil spills in SAR images by using discriminant cuts
    Ding, Xianwen
    Zou, Xiaolin
    MIPPR 2017: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2018, 10608
  • [10] Region-based GLRT detection of oil spills in SAR images
    Chang, Lena
    Tang, Z. S.
    Chang, S. H.
    Chang, Yang-Lang
    PATTERN RECOGNITION LETTERS, 2008, 29 (14) : 1915 - 1923