Some results on surjectivity of augmented differential operators

被引:4
|
作者
Kalmes, T. [1 ]
机构
[1] Univ Trier, FB Math 4, D-54286 Trier, Germany
关键词
Linear partial differential operator; Convexity conditions; Propagation of singularities; Characteristic hyperplanes; REAL ANALYTIC-FUNCTIONS; LINEAR RIGHT INVERSE; CONSTANT-COEFFICIENTS; SPACES; EQUATIONS; ADMIT;
D O I
10.1016/j.jmaa.2011.07.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering a problem of Bonet and Domanski (2006) [1, Problem 9.1], we prove that for a polynomial P on R(2) surjectivity of the differential operator P(D) on D'(X) implies surjectivity of the augmented operator P(+)(D) on D'(X x R), where P(+)(x(1), x(2), x(3)) := P(xi, x2). Moreover we give a sufficient geometrical condition on an open subset X of R(d) such that an analogous implication is true for arbitrary dimension d in case of P being homogeneous, semi-elliptic, or of principal type. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 50 条