Numerical and Experimental Thermal-Hydraulic Performance Analysis of a Supercritical CO2 Brayton Cycle PCHE Recuperator

被引:4
|
作者
Arslan, Feyyaz [1 ]
Guzel, Bulent [1 ]
机构
[1] Yildiz Tech Univ, Dept Naval Architecture & Marine Engn, TR-34349 Istanbul, Turkey
关键词
Supercritical; PCHE recuperator; Thermal– hydraulic analysis; Compact heat exchanger; WHRS; Printed circuit heat exchanger;
D O I
10.1007/s13369-021-05464-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The supercritical carbon dioxide (s-CO2) power cycles are mostly preferred due to their high thermal efficiency and power density in comparison with the conventional steam Rankine cycles. In this study, a printed circuit heat exchanger recuperator which is an important component in s-CO2 recuperative Brayton cycles is numerically and experimentally examined. Within this scope, thermal-hydraulic and structural analyses of a proposed PCHE have been carried out. The sub-heat exchanger model, which uses the output of a sub-heat exchanger as the input of the next one, is applied in the numerical thermal-hydraulic design by subdividing the printed circuit heat exchanger. From the results of this analysis, a heat exchanger is structurally designed and fabricated in compliance with ASME BPVC rules. The fabricated 25 kW printed circuit heat exchanger has reached to 1000 m(2)/m(3) compactness value with 1 mm thickness of fin and 1.5 mm thickness of plate. The experiments were performed on a test bench working with supercritical carbon dioxide at high pressures. The results of the experimental and numerical analyses are in good agreement. The maximum difference between the heat loads and the effectiveness values is 4.9% and 5.4%, respectively. The difference between the overall heat transfer coefficients is 1.2%. It is shown that using the sub-heat exchanger model provides highly accurate printed circuit heat exchanger designs.
引用
收藏
页码:7543 / 7556
页数:14
相关论文
共 50 条
  • [1] Numerical and Experimental Thermal–Hydraulic Performance Analysis of a Supercritical CO2 Brayton Cycle PCHE Recuperator
    Feyyaz Arslan
    Bülent Güzel
    [J]. Arabian Journal for Science and Engineering, 2021, 46 : 7543 - 7556
  • [2] Thermal Hydraulic Performance Analysis of PCHE Precooler for Supercritical CO2 Brayton Cycle
    Lu, Mingjian
    Yan, Xinping
    Sun, Yuwei
    Wang, Jian
    Gong, Zikang
    [J]. 2019 5TH INTERNATIONAL CONFERENCE ON TRANSPORTATION INFORMATION AND SAFETY (ICTIS 2019), 2019, : 537 - 541
  • [3] Numerical Study of Thermal-Hydraulic Performance of a New Spiral Z-Type PCHE for Supercritical CO2 Brayton Cycle
    Xu, Tingting
    Zhao, Hongxia
    Wang, Miao
    Qi, Jianhui
    [J]. ENERGIES, 2021, 14 (15)
  • [4] A performance recovery coefficient for thermal-hydraulic evaluation of recuperator in supercritical carbon dioxide Brayton cycle
    Li, X. L.
    Tang, G. H.
    Fan, Y. H.
    Yang, D. L.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2022, 256
  • [5] Experimental and Numerical Study on Thermal Hydraulic Performance of Trapezoidal Printed Circuit Heat Exchanger for Supercritical CO2 Brayton Cycle
    Ji, Yuxuan
    Wang, Zheng
    Wang, Mingxuan
    Liu, Yafei
    Xu, Haoran
    Zhu, Peiwang
    Ma, Shilei
    Yang, Zhigang
    Xiao, Gang
    [J]. ENERGIES, 2022, 15 (14)
  • [6] Thermal-hydraulic performance analysis of printed circuit heat exchanger precooler in the Brayton cycle for supercritical CO2 waste heat recovery
    Liu, Bohan
    Lu, Mingjian
    Shui, Bo
    Sun, Yuwei
    Wei, Wei
    [J]. APPLIED ENERGY, 2022, 305
  • [7] Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle
    Jeon, Sangwoo
    Baik, Young-Jin
    Byon, Chan
    Kim, Woojin
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 : 867 - 876
  • [8] Thermal-hydraulic performance of novel slotted fusiform fin printed circuit heat exchanger for supercritical CO2 Brayton cycle
    Jin, Wanlong
    Wang, Limin
    Deng, Lei
    Zhang, Lei
    Che, Defu
    [J]. APPLIED THERMAL ENGINEERING, 2024, 248
  • [9] Thermal-hydraulic analysis of sinusoidal fin-based printed circuit heat exchangers for supercritical CO2 Brayton cycle
    Saeed, Muhammad
    Kim, Man-Hoe
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2019, 193 : 124 - 139
  • [10] THERMODYNAMIC PERFORMANCE ANALYSIS OF SUPERCRITICAL CO2 BRAYTON CYCLE
    Yang, Xiaoping
    Cai, Zhuodi
    [J]. THERMAL SCIENCE, 2021, 25 (05): : 3933 - 3943