Noise Estimation and Adaptive Filtering During Visual Tracking

被引:0
|
作者
Ndiour, Ibrahima J. [1 ]
Vela, Patricio A. [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
关键词
Contour tracking; observers; contrast parameter; shape metrics; SHAPE PRIORS;
D O I
10.1109/ICIP.2009.5413654
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a procedure to characterize segmentation-based visual tracking performance with respect to imaging noise. It identifies how imaging noise affects the target segmentation as measured through local shape metrics (Sobolev and Laplace metrics). Such a procedure would be an important calibration step prior to implementing a visual tracking filter for a given need. We utilize the Bhattacharyya coefficient between the target and background intensity distributions to estimate the segmentation error. An empirical study is conducted to establish a correspondence between the Bhattacharyya coefficient and the segmentation error. The correspondence is used to adaptively filter temporally correlated segmentations. Preliminary results show improved performance when compared to fixed gains.
引用
收藏
页码:4365 / 4368
页数:4
相关论文
共 50 条
  • [1] A Novel Adaptive Noise Covariance Matrix Estimation and Filtering Method: Application to Multiobject Tracking
    Jiang, Chao
    Wang, Zhiling
    Liang, Huawei
    Wang, Yajun
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 626 - 641
  • [2] Hierarchical Estimation for Adaptive Visual Tracking
    Yun, SeokMin
    Na, JinHee
    Kang, Woo-Sung
    Choi, JinYoung
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3133 - 3136
  • [3] Adaptive filtering for pose estimation in visual servoing
    Ficocelli, M
    Janabi-Sharifi, F
    [J]. IROS 2001: PROCEEDINGS OF THE 2001 IEEE/RJS INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4: EXPANDING THE SOCIETAL ROLE OF ROBOTICS IN THE NEXT MILLENNIUM, 2001, : 19 - 24
  • [4] An adaptive spatiotemporal correlation filtering visual tracking method
    Liu, Yuhan
    Yan, He
    Zhang, Wei
    Li, Mengxue
    Liu, Lingkun
    [J]. PLOS ONE, 2023, 18 (01):
  • [5] Visual Tracking by Adaptive Kalman Filtering and Mean Shift
    Karavasilis, Vasileios
    Nikou, Christophoros
    Likas, Aristidis
    [J]. ARTIFICIAL INTELLIGENCE: THEORIES, MODELS AND APPLICATIONS, PROCEEDINGS, 2010, 6040 : 153 - 162
  • [6] ADAPTIVE PARTICLE FILTERING APPROACH TO AUDIO VISUAL TRACKING
    Kilic, Volkan
    Barnard, Mark
    Wang, Wenwu
    Kittler, Josef
    [J]. 2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [7] Audio Assisted Robust Visual Tracking With Adaptive Particle Filtering
    Kilic, Volkan
    Barnard, Mark
    Wang, Wenwu
    Kittler, Josef
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (02) : 186 - 200
  • [8] Feature integration for adaptive visual tracking in a particle filtering framework
    Komeili, M.
    Armanfard, N.
    Valizadeh, M.
    Kabir, E.
    [J]. 2009 14TH INTERNATIONAL COMPUTER CONFERENCE, 2009, : 115 - 120
  • [9] Adaptive Visual Tracking with Minimum Uncertainty Gap Estimation
    Kwon, Junseok
    Lee, Kyoung Mu
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (01) : 18 - 31
  • [10] Multiple Model Filtering for Vehicle Trajectory Tracking with Adaptive Noise Covariances
    Nithin, M.
    Panda, Manoj
    [J]. INTELLIGENT COMPUTING, INFORMATION AND CONTROL SYSTEMS, ICICCS 2019, 2020, 1039 : 557 - 565