A NOTE ON A STOCHASTIC PERTURBED DI SIR EPIDEMIC MODEL

被引:0
|
作者
Yang, Qingshan [1 ]
Ji, Chunyan [1 ,2 ]
Jiang, Daqing [1 ]
O'Regan, Donal [3 ]
Agarwal, Ravi P. [4 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Changshu Inst Technol, Dept Math, Changshu 215500, Jiangsu, Peoples R China
[3] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[4] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2011年 / 20卷 / 2-3期
关键词
Stochastic DI SIR epidemic model; Ito's formula; Stochastic Lyapunov function; DIFFERENTIAL INFECTIVITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the asymptotic behavior of a DI SIR epidemic model with a stochastic perturbation. The ergodic property is obtained by stochastic Lyapunov functions. We also make simulations to show how the solution goes around the endemic equilibrium of a deterministic system under conditions, winch conform to our analytical result.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 50 条
  • [1] The long time behavior of DI SIR epidemic model with stochastic perturbation
    Jiang, Daqing
    Ji, Chunyan
    Shi, Ningzhong
    Yu, Jiajia
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (01) : 162 - 180
  • [2] Permanence and extinction for the stochastic SIR epidemic model
    Du, N. H.
    Nhu, N. N.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9619 - 9652
  • [3] The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences
    Liu, Hong
    Yang, Qingshan
    Jiang, Daqing
    [J]. AUTOMATICA, 2012, 48 (05) : 820 - 825
  • [4] Dynamics Analysis of a Stochastic SIR Epidemic Model
    Rao, Feng
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] The Behavior of an SIR Epidemic Model with Stochastic Perturbation
    Ji, Chunyan
    Jiang, Daqing
    Shi, Ningzhong
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (05) : 755 - 773
  • [6] Multigroup SIR epidemic model with stochastic perturbation
    Ji, Chunyan
    Jiang, Daqing
    Shi, Ningzhong
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (10) : 1747 - 1762
  • [7] Stability of a Stochastic Model of an SIR Epidemic with Vaccination
    P. J. Witbooi
    [J]. Acta Biotheoretica, 2017, 65 : 151 - 165
  • [8] Stability of a Stochastic Model of an SIR Epidemic with Vaccination
    Witbooi, P. J.
    [J]. ACTA BIOTHEORETICA, 2017, 65 (02) : 151 - 165
  • [9] A note on the Lyapunov functions for SIR and SIRS epidemic model
    Mohamadhasani, Mahboobeh
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (02) : 285 - 288
  • [10] Dynamics of a multigroup SIR epidemic model with stochastic perturbation
    Ji, Chunyan
    Jiang, Daqing
    Yang, Qingshan
    Shi, Ningzhong
    [J]. AUTOMATICA, 2012, 48 (01) : 121 - 131