On the lattice structure of pseudorandom numbers generated over arbitrary finite fields

被引:13
|
作者
Niederreiter, H
Winterhof, A
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Austrian Acad Sci, Inst Discrete Math, A-1010 Vienna, Austria
关键词
pseudorandom number generator; nonlinear method; Marsaglia's lattice test;
D O I
10.1007/s002000100074
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Marsaglia's lattice test for congruential pseudorandom number generators module a prime is extended to a test for generators over arbitrary finite fields. A congruential generator eta (0),eta (1),...,generator by eta (n) = g(n), n = 0, 1,..., passes Marsaglia's s-dimensional lattice test if and only if s less than or equal to deg(g). It is investigated how far this condition holds true for polynomials over arbitrary finite fields F-q, particularly for polynomials of the form g(d) (x) = alpha (x + beta)(d) + gamma, alpha, beta, gamma is an element of F-q, alpha not equal 0, 1 < d < q - 1.
引用
下载
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [1] On the Lattice Structure of Pseudorandom Numbers Generated over Arbitrary Finite Fields
    Harald Niederreiter
    Arne Winterhof
    Applicable Algebra in Engineering, Communication and Computing, 2001, 12 : 265 - 272
  • [2] Lattice structure and linear complexity of nonlinear pseudorandom numbers
    Niederreiter, H
    Winterhof, A
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2002, 13 (04) : 319 - 326
  • [3] On the distribution and lattice structure of nonlinear congruential pseudorandom numbers
    Niederreiter, H
    Shparlinski, IE
    FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (03) : 246 - 253
  • [4] Lattice Structure and Linear Complexity of Nonlinear Pseudorandom Numbers
    Harald Niederreiter
    Arne Winterhof
    Applicable Algebra in Engineering, Communication and Computing, 2002, 13 : 319 - 326
  • [5] On the group generated by the round functions of translation based ciphers over arbitrary finite fields
    Aragona, R.
    Caranti, A.
    Dalla Volta, F.
    Sala, M.
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 25 : 293 - 305
  • [6] The cycle structure of LFSR with arbitrary characteristic polynomial over finite fields
    Zuling Chang
    Martianus Frederic Ezerman
    San Ling
    Huaxiong Wang
    Cryptography and Communications, 2018, 10 : 1183 - 1202
  • [7] The cycle structure of LFSR with arbitrary characteristic polynomial over finite fields
    Chang, Zuling
    Ezerman, Martianus Frederic
    Ling, San
    Wang, Huaxiong
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (06): : 1183 - 1202
  • [8] ON MARSAGLIA LATTICE TEST FOR PSEUDORANDOM NUMBERS
    EICHENAUER, J
    NIEDERREITER, H
    MANUSCRIPTA MATHEMATICA, 1988, 62 (02) : 245 - 248
  • [9] Factoring polynomials over arbitrary finite fields
    Lange, T
    Winterhof, A
    THEORETICAL COMPUTER SCIENCE, 2000, 234 (1-2) : 301 - 308
  • [10] Products of Differences over Arbitrary Finite Fields
    Murphy, Brendan
    Petridis, Giorgis
    DISCRETE ANALYSIS, 2018,