Whittle pseudo-maximum likelihood estimation for nonstationary time series

被引:123
|
作者
Velasco, C [1 ]
Robinson, PM
机构
[1] Univ Carlos III Madrid, Dept Estadist & Econ, Getafe 28903, Madrid, Spain
[2] Univ London London Sch Econ & Polit Sci, Dept Econ, London WC2A 2AE, England
关键词
frequency domain estimation; long-range dependence; nonstationary fractional models; nonstationary long memory time series; tapering;
D O I
10.2307/2669763
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Whittle pseudo-maximum likelihood estimates of parameters for stationary time series have been found to be consistent and asymptotically normal in the presence of long-range dependence. Generalizing the definition of the memory parameter d, we extend these results to include possibly nonstationary (.5 less than or equal to d < 1) or antipersistent (-.5 < d < 0) observations. Using adequate data tapers, we can apply this estimation technique to any degree of nonstationarity d <greater than or equal to> .5 without a priori knowledge of the memory of the series. We analyze the performance of the estimates on simulated and real data.
引用
收藏
页码:1229 / 1243
页数:15
相关论文
共 50 条
  • [1] GAUSSIAN PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION OF FRACTIONAL TIME SERIES MODELS
    Hualde, Javier
    Robinson, Peter M.
    [J]. ANNALS OF STATISTICS, 2011, 39 (06): : 3152 - 3181
  • [2] Pseudo-maximum likelihood estimation of ARCH(∞) models
    Robinson, Peter M.
    Zaffaroni, Paolo
    [J]. ANNALS OF STATISTICS, 2006, 34 (03): : 1049 - 1074
  • [3] Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators
    Broze, L
    Gourieroux, C
    [J]. JOURNAL OF ECONOMETRICS, 1998, 85 (01) : 75 - 98
  • [4] Adaptive pseudo-maximum likelihood data estimation algorithm
    Sadjadpour, HR
    Weber, CL
    [J]. CONFERENCE RECORD OF THE THIRTY-SECOND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 32 - 36
  • [5] ON MAXIMUM LIKELIHOOD AND PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION IN COMPOUND INSURANCE MODELS WITH DEDUCTIBLES
    Paulsen, Jostein
    Stubo, Knut
    [J]. ASTIN BULLETIN, 2011, 41 (01): : 1 - 28
  • [6] Simplified pseudo-maximum likelihood data estimation algorithm
    Sadjadpour, HR
    Weber, CL
    [J]. THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 435 - 439
  • [7] Pseudo-maximum likelihood estimators in linear regression models with fractional time series
    Hu, Hongchang
    Hu, Weifu
    Yu, Xinxin
    [J]. STATISTICAL PAPERS, 2021, 62 (02) : 639 - 659
  • [8] Pseudo-maximum likelihood estimators in linear regression models with fractional time series
    Hongchang Hu
    Weifu Hu
    Xinxin Yu
    [J]. Statistical Papers, 2021, 62 : 639 - 659
  • [9] Pseudo-Maximum Likelihood Estimation of ballistic missile precession frequency
    Liu, Lihua
    Ghogho, Mounir
    McLernon, Des
    Hu, Weidong
    [J]. SIGNAL PROCESSING, 2012, 92 (09) : 2018 - 2028
  • [10] NONINVERTIBILITY AND PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION OF MISSPECIFIED ARMA MODELS
    POTSCHER, BM
    [J]. ECONOMETRIC THEORY, 1991, 7 (04) : 435 - 449