Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials

被引:27
|
作者
Wei, Qingguo [1 ]
Feng, Siwei [1 ]
Lu, Zongwu [1 ]
机构
[1] Nanchang Univ, Sch Informat Engn, Dept Elect Engn, Nanchang 330029, Peoples R China
来源
PLOS ONE | 2016年 / 11卷 / 05期
基金
中国国家自然科学基金;
关键词
CANONICAL CORRELATION-ANALYSIS; FREQUENCY; CORTEX; SIZE; COMMUNICATION;
D O I
10.1371/journal.pone.0156416
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A brain-computer interface (BCI) based on code modulated visual evoked potentials (c-VEP) is among the fastest BCIs that have ever been reported, but it has not yet been given a thorough study. In this study, a pseudorandom binary M sequence and its time lag sequences are utilized for modulation of different stimuli and template matching is adopted as the method for target recognition. Five experiments were devised to investigate the effect of stimulus specificity on target recognition and we made an effort to find the optimal stimulus parameters for size, color and proximity of the stimuli, length of modulation sequence and its lag between two adjacent stimuli. By changing the values of these parameters and measuring classification accuracy of the c-VEP BCI, an optimal value of each parameter can be attained. Experimental results of ten subjects showed that stimulus size of visual angle 3.8 degrees, white, spatial proximity of visual angle 4.8 degrees center to center apart, modulation sequence of length 63 bits and the lag of 4 bits between adjacent stimuli yield individually superior performance. These findings provide a basis for determining stimulus presentation of a high-performance c-VEP based BCI system.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Optimization of Visual Stimulus Sequence in a Brain-Computer Interface Based on Code Modulated Visual Evoked Potentials
    Behboodi, Mohammadreza
    Mahnam, Amin
    Marateb, Hamidreza
    Rabbani, Hossein
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2020, 28 (12) : 2762 - 2772
  • [2] Stimulus Design for Visual Evoked Potential Based Brain-Computer Interfaces
    Xu, Haoyin
    Hsu, Sheng-Hsiou
    Nakanishi, Masaki
    Lin, Yufan
    Jung, Tzyy-Ping
    Cauwenberghs, Gert
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 2545 - 2551
  • [3] Towards an Optimization of Stimulus Parameters for Brain-Computer Interfaces Based on Steady State Visual Evoked Potentials
    Duszyk, Anna
    Bierzynska, Maria
    Radzikowska, Zofia
    Milanowski, Piotr
    Kus, Rafal
    Suffczynski, Piotr
    Michalska, Magdalena
    Labecki, Maciej
    Zwolinski, Piotr
    Durka, Piotr
    [J]. PLOS ONE, 2014, 9 (11):
  • [4] Effects of Stimulus Sequences on Brain-Computer Interfaces Using Code-Modulated Visual Evoked Potentials: An Offline Simulation
    Thielen, Jordy
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT II, 2023, 14135 : 555 - 568
  • [5] Brain-computer interfaces based on visual evoked potentials - Feasibility of practical system designs
    Wang, Yijun
    Gao, Xiaorong
    Hong, Bo
    Jia, Chuan
    Gao, Shangkai
    [J]. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2008, 27 (05): : 64 - 71
  • [6] Brain-computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature review
    Martinez-Cagigal, Victor
    Thielen, Jordy
    Santamaria-Vazquez, Eduardo
    Perez-Velasco, Sergio
    Desain, Peter
    Hornero, Roberto
    [J]. JOURNAL OF NEURAL ENGINEERING, 2021, 18 (06)
  • [7] Exploring Session-to-Session Transfer for Brain-Computer Interfaces based on Code-Modulated Visual Evoked Potentials
    Gembler, Felix
    Stawicki, Piotr
    Rezeika, Aya
    Benda, Mihaly
    Volosyak, Ivan
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 1505 - 1510
  • [8] Evaluation of Different Visual Feedback Methods for Brain-Computer Interfaces (BCI) Based on Code-Modulated Visual Evoked Potentials (cVEP)
    Fodor, Milan Andras
    Herschel, Hannah
    Cantuerk, Atilla
    Heisenberg, Gernot
    Volosyak, Ivan
    [J]. BRAIN SCIENCES, 2024, 14 (08)
  • [9] WAVEFORM-BASED MULTI-STIMULUS CODING FOR BRAIN-COMPUTER INTERFACES BASED ON STEADY-STATE VISUAL EVOKED POTENTIALS
    Tanji, Yutaro
    Nakanishi, Masaki
    Suefusa, Kaori
    Tanaka, Toshihisa
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 821 - 825
  • [10] Use of Phase in Brain-Computer Interfaces based on Steady-State Visual Evoked Potentials
    Lopez-Gordo, M. A.
    Prieto, A.
    Pelayo, F.
    Morillas, C.
    [J]. NEURAL PROCESSING LETTERS, 2010, 32 (01) : 1 - 9