Concerning parameter estimation using the cosmic microwave background

被引:15
|
作者
Douspis, M
Bartlett, JG
Blanchard, A
Le Dour, M
机构
[1] Observ Midi Pyrenees, CNRS, Unite Associee, F-31400 Toulouse, France
[2] Univ Strasbourg 1, Observ Strasbourg, CNRS, F-67000 Strasbourg, France
关键词
cosmic microwave background; cosmology : observations; cosmology : theory;
D O I
10.1051/0004-6361:20000573
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Most parameter constraints obtained from cosmic microwave background (CMB) anisotropy data are based on power estimates and rely on approximate likelihood functions; computational difficulties generally preclude an exact analysis based on pixel values. With the specific goal of testing this kind of approach, we have performed a complete (un-approximated) likelihood analysis combining the COBE, Saskatoon and MAX data sets. We examine in detail the ability of certain approximate techniques based on band-power estimates to recover the full likelihood constraints. The traditional chi (2)-method does not always find the same best-fit model as the likelihood analysis (a bias), due mainly to the false assumption of Gaussian likelihoods that makes the method overly sensitive to data outliers. Although an improvement, other approaches employing non-Gaussian flat-band likelihoods do not always faithfully reproduce the complete likelihood constraints either; not even when using the exact flat-band likelihood curves. We trace this to the neglect of spectral information by simple flat band-power estimates. A straightforward extension incorporating a local effective slope (of the power spectrum, C(l)) provides a faithful representation of the likelihood surfaces without significantly increasing computing cost. Finally, we also demonstrate that the best-fit model to this particular data set is a good Ft, or that the observations are consistent with Gaussian sky fluctuations, according to our statistics.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] How to foot cosmic microwave background parameter estimation
    Kinney, WH
    PHYSICAL REVIEW D, 2001, 63 (04)
  • [2] Cosmic microwave background component separation by parameter estimation
    Eriksen, HK
    Dickinson, C
    Lawrence, CR
    Baccigalupi, C
    Banday, AJ
    Górski, KM
    Hansen, FK
    Lilje, PB
    Pierpaoli, E
    Seiffert, MD
    Smith, KM
    Vanderlinde, K
    ASTROPHYSICAL JOURNAL, 2006, 641 (02): : 665 - 682
  • [3] Parameter estimation for the cosmic microwave background with Bayesian neural networks
    Hortua, Hector J.
    Volpi, Riccardo
    Marinelli, Dimitri
    Malago, Luigi
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [4] Gravitational lensing of cosmic microwave background anisotropies and cosmological parameter estimation
    Stompor, R
    Efstathiou, G
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 302 (04) : 735 - 747
  • [5] Fast parameter estimation from the cosmic microwave background power spectrum
    Gupta, S
    Heavens, AF
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 334 (01) : 167 - 172
  • [6] Cosmic complementarity: Joint parameter estimation from cosmic microwave background experiments and redshift surveys
    Eisenstein, DJ
    Hu, W
    Tegmark, M
    ASTROPHYSICAL JOURNAL, 1999, 518 (01): : 2 - 23
  • [7] PARAMETER ESTIMATION FROM IMPROVED MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD
    Gupta, S.
    Ade, P.
    Bock, J.
    Bowden, M.
    Brown, M. L.
    Cahill, G.
    Castro, P. G.
    Church, S.
    Culverhouse, T.
    Friedman, R. B.
    Ganga, K.
    Gear, W. K.
    Hinderks, J.
    Kovac, J.
    Lange, A. E.
    Leitch, E.
    Melhuish, S. J.
    Memari, Y.
    Murphy, J. A.
    Orlando, A.
    O'Sullivan, C.
    Piccirillo, L.
    Pryke, C.
    Rajguru, N.
    Rusholme, B.
    Schwarz, R.
    Taylor, A. N.
    Thompson, K. L.
    Turner, A. H.
    Wu, E. Y. S.
    Zemcov, M.
    ASTROPHYSICAL JOURNAL, 2010, 716 (02): : 1040 - 1046
  • [8] Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements
    Christensen, N
    Meyer, R
    Knox, L
    Luey, B
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (14) : 2677 - 2688
  • [9] Optimal Cosmic Microwave Background Lensing Reconstruction and Parameter Estimation with SPTpol Data
    Millea, M.
    Daley, C. M.
    Chou, T-L
    Anderes, E.
    Ade, P. A. R.
    Anderson, A. J.
    Austermann, J. E.
    Avva, J. S.
    Beall, J. A.
    Bender, A. N.
    Benson, B. A.
    Bianchini, F.
    Bleem, L. E.
    Carlstrom, J. E.
    Chang, C. L.
    Chaubal, P.
    Chiang, H. C.
    Citron, R.
    Moran, C. Corbett
    Crawford, T. M.
    Crites, A. T.
    de Haan, T.
    Dobbs, M. A.
    Everett, W.
    Gallicchio, J.
    George, E. M.
    Goeckner-Wald, N.
    Guns, S.
    Gupta, N.
    Halverson, N. W.
    Henning, J. W.
    Hilton, G. C.
    Holder, G. P.
    Holzapfel, W. L.
    Hrubes, J. D.
    Huang, N.
    Hubmayr, J.
    Irwin, K. D.
    Knox, L.
    Lee, A. T.
    Li, D.
    Lowitz, A.
    McMahon, J. J.
    Meyer, S. S.
    Mocanu, L. M.
    Montgomery, J.
    Natoli, T.
    Nibarger, J. P.
    Noble, G.
    Novosad, V
    ASTROPHYSICAL JOURNAL, 2021, 922 (02):
  • [10] The effects of cosmic microwave background (CMB) temperature uncertainties on cosmological parameter estimation
    Hamann, Jan
    Wong, Yvonne Y. Y.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (03):