On a Generalization for Tribonacci Quaternions

被引:21
|
作者
Cerda-Morales, Gamaliel [1 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Matemat, Blanco Viel 596, Valparaiso, Chile
关键词
Quaternion; generalized Tribonacci sequence; Narayana sequence; third order Jacobsthal sequence; IDENTITIES;
D O I
10.1007/s00009-017-1042-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V-n denote the third order linear recursive sequence defined by the initial values V-0, V-1 and V-2 and the recursion V-n = rVn(-1+) sV(n-2) + tV(n-3) if n >= 3, where r, s, and t are real constants. The {V-n}(n >= 0) are generalized Tribonacci numbers and reduce to the usual Tribonacci numbers when r = s = t = 1 and to the 3-bonacci numbers when r = s = 1 and t = 0. In this study, we introduced a quaternion sequence which has not been introduced before. We show that the new quaternion sequence that we introduced includes the previously introduced Tribonacci, Padovan, Narayana and third order Jacobsthal quaternion sequences. We obtained the Binet formula, summation formula and the norm value for this new quaternion sequence.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On a Generalization for Tribonacci Quaternions
    Gamaliel Cerda-Morales
    Mediterranean Journal of Mathematics, 2017, 14
  • [2] Unrestricted Tribonacci and Tribonacci-Lucas quaternions
    Kizilaslan, Gonca
    Karabulut, Leyla
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (02) : 310 - 321
  • [3] On some Properties of Tribonacci Quaternions
    Akkus, Ilker
    Kizilaslan, Gonca
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (03): : 5 - 20
  • [4] Generalised Tribonacci hybrid quaternions
    Dagdeviren, Ali
    Kuruz, Ferhat
    LOGIC JOURNAL OF THE IGPL, 2025,
  • [5] On the Bicomplex Generalized Tribonacci Quaternions
    Kizilates, Can
    Catarino, Paula
    Tuglu, Naim
    MATHEMATICS, 2019, 7 (01):
  • [6] Examination of generalized Tribonacci dual quaternions
    Isbilir, Zehra
    Guerses, Nurten
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2023, 27 (02): : 235 - 255
  • [7] On generalization for Tribonacci Trigintaduonions
    Saini, Kavita
    Raj, Kuldip
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (02): : 420 - 428
  • [8] On generalization for Tribonacci Trigintaduonions
    Kavita Saini
    Kuldip Raj
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 420 - 428
  • [9] A Generalization of Quaternions and Their Applications
    Lin, Hong-Yang
    Cahay, Marc
    Vellambi, Badri N.
    Morris, Dennis
    SYMMETRY-BASEL, 2022, 14 (03):
  • [10] On a generalization for fibonacci quaternions
    Halici, Serpil
    Karatas, Adnan
    CHAOS SOLITONS & FRACTALS, 2017, 98 : 178 - 182