Voronoi fluid particle model for Euler equations

被引:10
|
作者
Serrano, M [1 ]
Español, P [1 ]
Zúñiga, I [1 ]
机构
[1] Univ Nacl Educ Distancia, Dept Fis Fundamental, Madrid 28040, Spain
关键词
fluid particle models; Euler equations; Lagrangian turbulence;
D O I
10.1007/s10955-005-8414-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a fluid particle model based on the Voronoi tessellation that allows one to represent an inviscid fluid in a Lagrangian description. The discrete model has all the required symmetries and structure of the continuum equations and can be understood as a linearly consistent discretization of Euler's equations. Although the model is purely inviscid, we observe that the probability distribution of the accelerations of the Voronoi fluid particles shows the presence of tails at large accelerations, what is compatible with experimental Lagrangian turbulence observations.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 50 条
  • [1] Voronoi Fluid Particle Model for Euler Equations
    Mar Serrano
    Pep Español
    Ignacio Zúñiga
    Journal of Statistical Physics, 2005, 121 : 133 - 147
  • [2] Quaternions and particle dynamics in the Euler fluid equations
    Gibbon, J. D.
    Holm, D. D.
    Kerr, R. M.
    Roulstone, I.
    NONLINEARITY, 2006, 19 (08) : 1969 - 1983
  • [3] Two-fluid model of the truncated Euler equations
    Krstulovic, Giorgio
    Brachet, Marc-Etienne
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (14-17) : 2015 - 2019
  • [4] From two-fluid Euler-Poisson equations to one-fluid Euler equations
    Li, Yachun
    Peng, Yue-Jun
    Wang, Ya-Guang
    ASYMPTOTIC ANALYSIS, 2013, 85 (3-4) : 125 - 148
  • [5] Comparison between smoothed dissipative particle dynamics and Voronoi fluid particle model in a shear stationary flow
    Serrano, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (01) : 204 - 209
  • [6] The Euler equations of compressible fluid flow
    Christodoulou, Demetrios
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (04) : 581 - 602
  • [7] On the Convergence Rate of the Euler-α, an Inviscid Second-Grade Complex Fluid, Model to the Euler Equations
    Jasmine S. Linshiz
    Edriss S. Titi
    Journal of Statistical Physics, 2010, 138 : 305 - 332
  • [8] On the Convergence Rate of the Euler-α, an Inviscid Second-Grade Complex Fluid, Model to the Euler Equations
    Linshiz, Jasmine S.
    Titi, Edriss S.
    JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (1-3) : 305 - 332
  • [9] GLOBAL BOUNDED WEAK ENTROPY SOLUTIONS TO THE EULER-VLASOV EQUATIONS IN FLUID-PARTICLE SYSTEM
    Cao, Wentao
    Jiang, Peng
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (04) : 3958 - 3984
  • [10] Blow-up criteria for a two-fluid model of the truncated Euler equations
    Xu, Yonglin
    Mao, Haizhou
    Fan, Xiaohong
    Ma, Liqiang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,