Parametric response surface models for analysis of multi-site fMRI data

被引:0
|
作者
Kim, S [1 ]
Smyth, P
Stern, H
Turner, J
机构
[1] Univ Calif Irvine, Bren Sch Informat & Comp Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Analyses of RAM brain data are often based on statistical tests applied to each voxel or use summary statistics within a region of interest (such as mean or peak activation). These approaches do not explicitly take into account spatial patterns in the activation signal. In this paper, we develop a response surface model with parameters that directly describe the spatial shapes of activation patterns. We present a stochastic search algorithm for parameter estimation. We apply our method to data from a multi-site fMRI study, and show how the estimated parameters can be used to analyze different sources of variability in image generation, both qualitatively and quantitatively, based on spatial activation patterns.
引用
收藏
页码:352 / 359
页数:8
相关论文
共 50 条
  • [1] Learning with multi-site fMRI graph data
    Castrillon, J. Gabriel
    Ahmadi, Ahmad
    Navab, Nassir
    Richiardi, Jonas
    [J]. CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 608 - 612
  • [2] Shared Space Transfer Learning for analyzing multi-site fMRI data
    Yousefnezhad, Muhammad
    Selvitella, Alessandro
    Zhang, Daoqiang
    Greenshaw, Andrew J.
    Greiner, Russell
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [3] A Hierarchical Modeling Approach to Data Analysis and Study Design in a Multi-site Experimental fMRI Study
    Bo Zhou
    Anna Konstorum
    Thao Duong
    Kinh H. Tieu
    William M. Wells
    Gregory G. Brown
    Hal S. Stern
    Babak Shahbaba
    [J]. Psychometrika, 2013, 78 : 260 - 278
  • [4] A Hierarchical Modeling Approach to Data Analysis and Study Design in a Multi-site Experimental fMRI Study
    Zhou, Bo
    Konstorum, Anna
    Thao Duong
    Tieu, Kinh H.
    Wells, William M.
    Brown, Gregory G.
    Stern, Hal S.
    Shahbaba, Babak
    [J]. PSYCHOMETRIKA, 2013, 78 (02) : 260 - 278
  • [5] Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data
    Yu, Meichen
    Linn, Kristin A.
    Cook, Philip A.
    Phillips, Mary L.
    McInnis, Melvin
    Fava, Maurizio
    Trivedi, Madhukar H.
    Weissman, Myrna M.
    Shinohara, Russell T.
    Sheline, Yvette I.
    [J]. HUMAN BRAIN MAPPING, 2018, 39 (11) : 4213 - 4227
  • [6] Hydrologic Response of SWAT to Single Site and Multi-Site Daily Rainfall Generation Models
    Watson, B. M.
    Srikanthan, R.
    Selvalingam, S.
    Ghafouri, M.
    [J]. MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 2981 - 2987
  • [7] Multi-site evaluation of terrestrial evaporation models using FLUXNET data
    Ershadi, A.
    McCabe, M. F.
    Evans, J. P.
    Chaney, N. W.
    Wood, E. F.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2014, 187 : 46 - 61
  • [8] SITE PERCOLATION PROBLEMS AND MULTI-SITE POTTS MODELS
    TEMPERLEY, HNV
    ASHLEY, SE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (01): : 215 - 222
  • [9] Multi-site Retrieval of Declustered Data
    Tosun, Ali Saman
    [J]. 28TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2008, : 486 - 493
  • [10] Molecular simulation of the surface tension of 33 multi-site models for real fluids
    Werth, Stephan
    Horsch, Martin
    Hasse, Hans
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2017, 235 : 126 - 134