Fast Spectral Ranking for Similarity Search

被引:20
|
作者
Iscen, Ahmet [1 ]
Avrithis, Yannis [2 ]
Tolias, Giorgos [1 ]
Furon, Teddy [2 ]
Chum, Ondrej [1 ]
机构
[1] Czech Tech Univ, FEE, VRG, Prague, Czech Republic
[2] Inria Rennes, Rennes, France
关键词
RANDOM-WALK; REGULARIZATION; MATRIX;
D O I
10.1109/CVPR.2018.00796
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the success of deep learning on representing images for particular object retrieval, recent studies show that the learned representations still lie on manifolds in a high dimensional space. This makes the Euclidean nearest neighbor search biased for this task. Exploring the manifolds online remains expensive even if a nearest neighbor graph has been computed offline. This work introduces an explicit embedding reducing manifold search to Euclidean search followed by dot product similarity search. This is equivalent to linear graph filtering of a sparse signal in the frequency domain. To speed up online search, we compute an approximate Fourier basis of the graph offline. We improve the state of art on particular object retrieval datasets including the challenging Instre dataset containing small objects. At a scale of 105 images, the offline cost is only a few hours, while query time is comparable to standard similarity search.
引用
收藏
页码:7632 / 7641
页数:10
相关论文
共 50 条
  • [1] Ranking Preserving Hashing for Fast Similarity Search
    Wang, Qifan
    Zhang, Zhiwei
    Si, Luo
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3911 - 3917
  • [2] Semi-supervised spectral hashing for fast similarity search
    Yao, Chengwei
    Bu, Jiajun
    Wu, Chenxia
    Chen, Gencai
    [J]. NEUROCOMPUTING, 2013, 101 : 52 - 58
  • [3] Combining fast search and learning for fast similarity search
    Vassef, H
    Li, CS
    Castelli, V
    [J]. STORAGE AND RETRIEVAL FOR MEDIA DATABASES 2000, 2000, 3972 : 32 - 42
  • [4] Supervised Ranking Hash for Semantic Similarity Search
    Li, Kai
    Qi, Guo-Jun
    Ye, Jun
    Yusuph, Tuoerhongjiang
    Hua, Kien A.
    [J]. PROCEEDINGS OF 2016 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2016, : 551 - 558
  • [5] Rank hash similarity for fast similarity search
    Lu, Min
    Huang, YaLou
    Xie, MaoQiang
    Liu, Jie
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2013, 49 (01) : 158 - 168
  • [6] Proof of structure similarity as a function of spectral similarity in IR spectral search
    B. G. Derendyaev
    V. N. Piottukh-Peletskii
    [J]. Journal of Structural Chemistry, 1999, 40 : 165 - 166
  • [7] Proof of structure similarity as a function of spectral similarity in IR spectral search
    Derendyaev, BG
    Piottukh-Peletskii, VN
    [J]. JOURNAL OF STRUCTURAL CHEMISTRY, 1999, 40 (01) : 165 - 166
  • [8] Improved Fast Similarity Search in Dictionaries
    Karch, Daniel
    Luxen, Dennis
    Sanders, Peter
    [J]. STRING PROCESSING AND INFORMATION RETRIEVAL, 2010, 6393 : 173 - 178
  • [9] Fast similarity search in string databases
    Sheu, S
    Chang, A
    Huang, W
    [J]. 19TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 1, PROCEEDINGS: AINA 2005, 2005, : 617 - 622
  • [10] Fast Similarity Search for Learned Metrics
    Kulis, Brian
    Jain, Prateek
    Grauman, Kristen
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (12) : 2143 - 2157