共 50 条
Full-scale solutions to particle-laden flows: Multidirect forcing and immersed boundary method
被引:112
|作者:
Luo, Kun
[1
]
Wang, Zeli
[1
]
Fan, Jianren
[1
]
Cen, Kefa
[1
]
机构:
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
来源:
关键词:
D O I:
10.1103/PhysRevE.76.066709
中图分类号:
O35 [流体力学];
O53 [等离子体物理学];
学科分类号:
070204 ;
080103 ;
080704 ;
摘要:
Towards getting the full-scale solutions to particle-laden flows, a multidirect forcing technique and immersed boundary method are proposed in the present work. The immersed solid boundary is represented by Lagrangian points and the no-slip condition is efficiently satisfied by exerting multidirect forcing. The hydrodynamic interactions between the stationary or moving solid boundary and the Newtonian fluid are able to be accurately described. This method is simple but efficient which is validated by simulating the flows around a stationary circular disc at different Reynolds numbers and the free sedimentation of a particle. The predicted results agree well with previous experimental and numerical data. When applying this method to study particle sedimentation near a vertical wall, the rotation shifting phenomenon is observed besides the anomalous rolling and the lateral migration.
引用
收藏
页数:9
相关论文