DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug-Target interaction prediction

被引:50
|
作者
Zhang, Peiliang [1 ]
Wei, Ziqi [2 ]
Che, Chao [1 ]
Jin, Bo [3 ]
机构
[1] Dalian Univ, Key Lab Adv Design & Intelligent Comp, Minist Educ, Dalian 116622, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
[3] Dalian Univ Technol, Sch Innovat & Entrepreneurship, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
DTI; Multilayer graph information; Transformer networks; COVID-19; Drug repositioning;
D O I
10.1016/j.compbiomed.2022.105214
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drug-target interaction (DTI) prediction reduces the cost and time of drug development, and plays a vital role in drug discovery. However, most of research does not fully explore the molecular structures of drug compounds in DTI prediction. To this end, we propose a deep learning model to capture the molecular structure information of drug compounds for DTI prediction. This model utilizes a transformer network incorporating multilayer graph information, which captures the features of a drug's molecular structure so that the interactions between atoms of drug compounds can be explored more deeply. At the same time, a convolutional neural network is employed to capture the local residue information in the target sequence, and effectively extract the feature information of the target. The experiments on the DrugBank dataset showed that the proposed model outperformed previous models based on the structure of target sequences. The results indicate that the improved transformer network fuses the feature information between layers in the graph convolutional neural network and extracts the interaction data for the molecular structure. The drug repositioning experiment on COVID-19 and Alzheimer's disease demonstrated the proposed model's ability to find therapeutic drugs in drug discovery. The code of our model is available at https://github.com/zhangpl109/DeepMGT-DTI.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] GSL-DTI: Graph structure learning network for Drug-Target interaction prediction
    E, Zixuan
    Qiao, Guanyu
    Wang, Guohua
    Li, Yang
    METHODS, 2024, 223 : 136 - 145
  • [2] Improved drug-target interaction prediction with intermolecular graph transformer
    Liu, Siyuan
    Wang, Yusong
    Deng, Yifan
    He, Liang
    Shao, Bin
    Yin, Jian
    Zheng, Nanning
    Liu, Tie-Yan
    Wang, Tong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [3] GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph
    Zhu, Yongdi
    Ning, Chunhui
    Zhang, Naiqian
    Wang, Mingyi
    Zhang, Yusen
    BMC BIOLOGY, 2024, 22 (01)
  • [4] Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding
    Qu, Xiaohan
    Du, Guoxia
    Hu, Jing
    Cai, Yongming
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2024, 20 (06) : 1013 - 1024
  • [5] Drug-target Interaction Prediction By Combining Transformer and Graph Neural Networks
    Liu, Junkai
    Lu, Yaoyao
    Guan, Shixuan
    Jiang, Tengsheng
    Ding, Yijie
    Fu, Qiming
    Cui, Zhiming
    Wu, Hongjie
    CURRENT BIOINFORMATICS, 2024, 19 (04) : 316 - 326
  • [6] Drug-Target Interaction Prediction Based on Interpretable Graph Transformer Model
    Zhu, Baozhong
    Zhang, Runhua
    Jiang, Tengsheng
    Cui, Zhiming
    Wu, Hongjie
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT III, 2023, 14088 : 676 - 686
  • [7] SP-DTI: subpocket-informed transformer for drug-target interaction prediction
    Liu, Sizhe
    Liu, Yuchen
    Xu, Haofeng
    Xia, Jun
    Li, Stan Z.
    BIOINFORMATICS, 2025, 41 (03)
  • [8] Heterogeneous Graph Attention Network for Drug-Target Interaction Prediction
    Li, Mei
    Cai, Xiangrui
    Li, Linyu
    Xu, Sihan
    Ji, Hua
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1166 - 1176
  • [9] CAT-DTI: cross-attention and Transformer network with domain adaptation for drug-target interaction prediction
    Zeng, Xiaoting
    Chen, Weilin
    Lei, Baiying
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [10] MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug-target interaction prediction
    Zhang, Ran
    Wang, Zhanjie
    Wang, Xuezhi
    Meng, Zhen
    Cui, Wenjuan
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)