About the period of bell numbers modulo a prime

被引:8
|
作者
Car, Mireille [1 ]
Gallardo, Luis H. [2 ]
Rahavandrainy, Olivier [2 ]
Vaserstein, Leonid N. [3 ]
机构
[1] Univ Aix Marseille 3, Dept Math, F-13397 Marseille 20, France
[2] Univ Brest, F-29238 Brest 3, France
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
Bell numbers modulo a prime; extension of prime degree p of F-p;
D O I
10.4134/BKMS.2008.45.1.143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number. It is known that the order o(r) of a root r of the irreducible polynomial x(P)-x-1 over FP divides g(p) = p(p)-1/p-1 Samuel Wagstaff recently conjectured that o(r) = g(p) for any prime p. The main object of the paper is to give some subsets S of {1,center dot center dot center dot g(p)} that do not contain o(r).
引用
收藏
页码:143 / 155
页数:13
相关论文
共 50 条
  • [1] THE PERIOD OF THE BELL NUMBERS MODULO A PRIME
    Montgomery, Peter L.
    Nahm, Sangil
    Wagstaff, Samuel S., Jr.
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (271) : 1793 - 1800
  • [2] Aurifeuillian factorizations and the period of the Bell numbers modulo a prime
    Wagstaff, SS
    [J]. MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 383 - 391
  • [3] Bell numbers modulo a prime number, traces and trinomials
    Gallardo, Luis H.
    Rahavandrainy, Olivier
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [4] A Property Of The Period Of A Bell Number Modulo A Prime Number
    Gallardo, Luis Henri
    [J]. APPLIED MATHEMATICS E-NOTES, 2016, 16 : 72 - 79
  • [5] BELL NUMBERS, MODULO A PRIME P, AND EXTENSIONS OF DEGREE OF FP
    RADOUX, C
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (21): : 879 - 882
  • [6] PROPERTIES OF DISTRIBUTION OF SERIES OF BELL NUMBERS MODULO A PRIME-P
    RADOUX, C
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (10): : 653 - 655
  • [7] Bell Numbers Modulo p
    Gallardo, Luis Henri
    [J]. APPLIED MATHEMATICS E-NOTES, 2023, 23 : 40 - 48
  • [8] CONGRUENCES OF THE FIBONACCI NUMBERS MODULO A PRIME
    Zyuz'kov, V. M.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2021, (69): : 15 - 21
  • [9] Congruences for Fishburn numbers modulo prime powers
    Straub, Armin
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (05) : 1679 - 1690
  • [10] Lehmer numbers and primitive roots modulo a prime
    Cohen, Stephen D.
    Trudgian, Tim
    [J]. JOURNAL OF NUMBER THEORY, 2019, 203 : 68 - 79