Bayesian Spatio-Temporal Modeling of Particulate Matter Concentrations in Peninsular Malaysia

被引:0
|
作者
Manga, Edna [1 ]
Awang, Norhashidah [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
关键词
PM10; CONCENTRATION; AIR-POLLUTION;
D O I
10.1063/1.4952564
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Spatio-temporal modeling of fine particulate matter
    Sujit K. Sahu
    Alan E. Gelfand
    David M. Holland
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2006, 11 : 61 - 86
  • [2] Spatio-temporal modeling of fine particulate matter
    Sahu, SK
    Gelfand, AE
    Holland, DM
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2006, 11 (01) : 61 - 86
  • [3] PRACTICAL LARGE-SCALE SPATIO-TEMPORAL MODELING OF PARTICULATE MATTER CONCENTRATIONS
    Paciorek, Christopher J.
    Yanosky, Jeff D.
    Puett, Robin C.
    Laden, Francine
    Suh, Helen H.
    [J]. ANNALS OF APPLIED STATISTICS, 2009, 3 (01): : 370 - 397
  • [4] Spatio-temporal variability of concentrations and speciation of particulate matter across Spain in the CALIOPE modeling system
    Pay, M. T.
    Jimenez-Guerrero, P.
    Jorba, O.
    Basart, S.
    Querol, X.
    Pandolfi, M.
    Baldasano, J. M.
    [J]. ATMOSPHERIC ENVIRONMENT, 2012, 46 : 376 - 396
  • [5] Spatio-temporal modeling of particulate matter concentration through the SPDE approach
    Cameletti, Michela
    Lindgren, Finn
    Simpson, Daniel
    Rue, Havard
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (02) : 109 - 131
  • [6] Spatio-temporal modeling of particulate matter concentration through the SPDE approach
    Michela Cameletti
    Finn Lindgren
    Daniel Simpson
    Håvard Rue
    [J]. AStA Advances in Statistical Analysis, 2013, 97 : 109 - 131
  • [7] Spatio-temporal clustering analysis of dengue disease in Peninsular Malaysia
    Nurul Syafiah Abd Naeeim
    Nuzlinda Abdul Rahman
    [J]. Journal of Public Health, 2023, 31 : 307 - 317
  • [8] Spatio-temporal clustering analysis of dengue disease in Peninsular Malaysia
    Abd Naeeim, Nurul Syafiah
    Abdul Rahman, Nuzlinda
    [J]. JOURNAL OF PUBLIC HEALTH-HEIDELBERG, 2023, 31 (02): : 307 - 317
  • [9] Spatio-Temporal Variation of Particulate Matter (PM10) During High Particulate Event (HPE) in Malaysia
    Ridzuan, Nursyaida Amila Mohammad
    Noor, Norazian Mohamed
    Rahim, Nur Alis Addiena A.
    Jafri, Izzati Amani Mohd
    Gyeorgy, Deak
    [J]. Lecture Notes in Civil Engineering, 2022, 214 : 39 - 50
  • [10] Spatio-Temporal Variation of Particulate Matter (PM10) During High Particulate Event (HPE) in Malaysia
    Ridzuan, Nursyaida Amila Mohammad
    Noor, Norazian Mohamed
    Rahim, Nur Alis Addiena A.
    Jafri, Izzati Amani Mohd
    Gyeorgy, Deak
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON GREEN ENVIRONMENTAL ENGINEERING AND TECHNOLOGY (ICONGEET 2021), 2022, 214 : 39 - 50