Levitan almost periodic and almost automorphic solutions of V-monotone differential equations

被引:19
|
作者
Cheban, David N. [1 ]
机构
[1] State Univ Moldova, Fac Math & Informat, Kishinev 2009, Moldova
关键词
V-monotone system; non-autonomous dynamical system; skew-product flow; Levitan almost periodic and almost automorphic solutions;
D O I
10.1007/s10884-008-9101-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article we consider a special class of equations x' = f(t, x) (1) when the function f : R x E -> E (E is a strictly convex Banach space) is V-monotone with respect to (w.r.t.) x epsilon E, i.e. there exists a continuous non-negative function V: E x E -> R(+), which equals to zero only on the diagonal, so that the numerical function alpha(t):= V(x(1)(t), x2(t)) is non-increasing w.r.t. t epsilon R(+), where x(1)(t) and x(2)(t) are two arbitrary solutions of (1) defined on R(+). The main result of this article states that every V-monotone Levitan almost periodic (almost automorphic, Bohr almost periodic) Eq. (1) with bounded solutions admits at least one Levitan almost periodic (almost automorphic, Bohr almost periodic) solution. In particulary, we obtain some new criterions of existence of almost recurrent (Levitan almost periodic, almost automophic, recurrent in the sense of Birkgoff) solutions of forced vectorial Lienard equations.
引用
收藏
页码:669 / 697
页数:29
相关论文
共 50 条