Computational modeling of Li-ion batteries

被引:55
|
作者
Grazioli, D. [1 ,2 ]
Magri, M. [1 ]
Salvadori, A. [1 ,3 ]
机构
[1] Univ Brescia, DICATAM, Via Branze 43, I-25123 Brescia, Italy
[2] Delft Univ Technol, Fac Civil Engn & Geosci, POB 5048, NL-2600 GA Delft, Netherlands
[3] Univ Notre Dame, Dept Aerosp & Mech Engn, Cushing Hall Engn, Notre Dame, IN 46556 USA
关键词
Energy storage materials; Computational modeling; Li-ion batteries; SOLID-ELECTROLYTE-INTERPHASE; REPRESENTATIVE VOLUME ELEMENT; INTERCALATION-INDUCED STRESS; DIFFUSION-INDUCED STRESSES; PHASE-TRANSITION PATHWAYS; LITHIUM-ION; ELECTROCHEMICAL MODEL; NUMERICAL-SIMULATION; NEGATIVE ELECTRODE; AGING MECHANISMS;
D O I
10.1007/s00466-016-1325-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This review focuses on energy storage materials modeling, with particular emphasis on Li-ion batteries. Theoretical and computational analyses not only provide a better understanding of the intimate behavior of actual batteries under operational and extreme conditions, but they may tailor new materials and shape new architectures in a complementary way to experimental approaches. Modeling can therefore play a very valuable role in the design and lifetime prediction of energy storage materials and devices. Batteries are inherently multi-scale, in space and time. The macro-structural characteristic lengths (the thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which atomistic intercalations occur. Multi-physics modeling concepts, methodologies, and simulations at different scales, as well as scale transition strategies proposed in the recent literature are here revised. Finally, computational challenges toward the next generation of Li-ion batteries are discussed.
引用
收藏
页码:889 / 909
页数:21
相关论文
共 50 条
  • [1] Computational modeling of Li-ion batteries
    D. Grazioli
    M. Magri
    A. Salvadori
    [J]. Computational Mechanics, 2016, 58 : 889 - 909
  • [2] Computational understanding of Li-ion batteries
    Alexander Urban
    Dong-Hwa Seo
    Gerbrand Ceder
    [J]. npj Computational Materials, 2
  • [3] Computational understanding of Li-ion batteries
    Urban, Alexander
    Seo, Dong-Hwa
    Ceder, Gerbrand
    [J]. NPJ COMPUTATIONAL MATERIALS, 2016, 2
  • [4] Hysteresis Modeling in Li-Ion Batteries
    Baronti, Federico
    Femia, Nicola
    Saletti, Roberto
    Visone, Ciro
    Zamboni, Walter
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (11)
  • [5] Erratum: Computational understanding of Li-ion batteries
    Alexander Urban
    Dong-Hwa Seo
    Gerbrand Ceder
    [J]. npj Computational Materials, 2
  • [6] Li-Ion Batteries and Li-Ion Ultracapacitors: Characteristics, Modeling and Grid Applications
    Hamidi, Seyed Ahmad
    Manla, Emad
    Nasiri, Adel
    [J]. 2015 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2015, : 4973 - 4979
  • [7] Perspective on Mechanistic Modeling of Li-Ion Batteries
    Dubarry, Matthieu
    Beck, David
    [J]. ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (08): : 843 - 853
  • [8] Modeling fractal electrodes for Li-ion batteries
    Teixidor, G. Turon
    Park, B. Y.
    Mukherjee, P. P.
    Kang, Q.
    Madou, M. J.
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (24) : 5928 - 5936
  • [9] Adaptive thermal modeling of Li-ion batteries
    Rad, M. Shadman
    Danilov, D. L.
    Baghalha, M.
    Kazemeini, M.
    Notten, P. H. L.
    [J]. ELECTROCHIMICA ACTA, 2013, 102 : 183 - 195
  • [10] Computational Modeling of Electrochemomechanics of High-Capacity Composite Electrodes in Li-Ion Batteries
    Shah, Sameep Rajubhai
    de Vasconcelos, Luize Scalco
    Zhao, Kejie
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2022, 89 (08):