Automatic Generation of Semantic Icon Encodings for Visualizations

被引:17
|
作者
Setlur, Vidya [1 ]
Mackinlay, Jock D. [2 ]
机构
[1] Tableau Software, Menlo Pk, CA 94025 USA
[2] Tableau Software, Seattle, WA 98103 USA
关键词
icon encodings; natural language processing (NLP); visualization; image retrieval; SIMILARITY;
D O I
10.1145/2556288.2557408
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Authors use icon encodings to indicate the semantics of categorical information in visualizations. The default icon libraries found in visualization tools often do not match the semantics of the data. Users often manually search for or create icons that are more semantically meaningful. This process can hinder the flow of visual analysis, especially when the amount of data is large, leading to a suboptimal user experience. We propose a technique for automatically generating semantically relevant icon encodings for categorical dimensions of data points. The algorithm employs natural language processing in order to find relevant imagery from the Internet. We evaluate our approach on Mechanical Turk by generating large libraries of icons using Tableau Public workbooks that represent real analytical effort by people out in the world. Our results show that the automatic algorithm does nearly as well as the manually created icons, and particularly has higher user satisfaction for larger cardinalities of data.
引用
收藏
页码:541 / 550
页数:10
相关论文
共 50 条
  • [1] Automatic Generation of Propagation Complete SAT Encodings
    Brain, Martin
    Hadarean, Liana
    Kroening, Daniel
    Martins, Ruben
    [J]. VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, VMCAI 2016, 2016, 9583 : 536 - 556
  • [2] Automatic Generation of Visualizations for Machine Learning Pipelines
    Liu, Lei
    Chen, Wei-Peng
    Bahrami, Mehdi
    Prasad, Mukul
    [J]. PROCEEDINGS OF THE 37TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE 2022, 2022,
  • [3] ICONATE: Automatic Compound Icon Generation and Ideation
    Zhao, Nanxuan
    Kim, Nam Wook
    Herman, Laura Mariah
    Pfister, Hanspeter
    Lau, Rynson W. H.
    Echevarria, Jose
    Bylinskii, Zoya
    [J]. PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), 2020,
  • [4] SmartShots: Enabling Automatic Generation of Videos with Data Visualizations Embedded
    Tang, Tan
    Tang, Junxiu
    Lai, Jiewen
    Ying, Lu
    Ren, Peiran
    Yu, Lingyun
    Wu, Yingcai
    [J]. MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4509 - 4511
  • [5] Automatic generation of semantic fields for resource discovery in the semantic web
    Navas, I
    Sanz, I
    Aldana, JF
    Berlanga, R
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2005, 3588 : 706 - 715
  • [6] Deep Semantic Encodings for Language Modeling
    Bayer, Ali Orkan
    Riccardi, Giuseppe
    [J]. 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1448 - 1452
  • [7] KNNs of Semantic Encodings for Rating Prediction
    Laugier, Leo
    Vadapalli, Raghuram
    Bonald, Thomas
    Dixon, Lucas
    [J]. 2023 IEEE 9TH INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING, CIC, 2023, : 82 - 91
  • [8] Semantic networks: visualizations of knowledge
    Hartley, Roger T.
    Barnden, John A.
    [J]. TRENDS IN COGNITIVE SCIENCES, 1997, 1 (05) : 169 - 175
  • [9] Automatic fuzzy ontology generation for Semantic Web
    Tho, QT
    Hui, SC
    Fong, ACM
    Cao, TH
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2006, 18 (06) : 842 - 856
  • [10] Automatic Test Generation on the Basis of a Semantic Network
    Dolgova, Elena
    Eriskina, E., V
    Faizrakhmanov, Rustam
    Kasyanova, E. A.
    Kurushin, D. S.
    Nesterova, N. M.
    Soboleva, O., V
    [J]. DIGITAL SCIENCE, 2019, 850 : 159 - 165