Ensemble Learning Approach for Subject-Independent P300 Speller

被引:3
|
作者
Mussabayeva, Ayana [1 ]
Jamwal, Prashant Kumar [1 ]
Akhtar, Muhammad Tahir [1 ]
机构
[1] Nazarbayev Univ, Sch Engn & Digital Sci, Dept Elect & Comp Engn, Kabanbay Batyr Ave 53, Nur Sultan 010000, Kazakhstan
关键词
D O I
10.1109/EMBC46164.2021.9629679
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
P300 speller is a brain-computer interface (BCI) speller system, used for enabling human with different paralyzing disorders, such as amyotrophic lateral sclerosis (ALS), to communicate with the outer world by processing electroencephalography (EEG) signals. Different people have different latency and amplitude of the P300 event-related potential (ERP) component, which is used as the main feature for detecting the target character. In order to achieve robust results for different subjects using generic training (GT), the ensemble learning classifiers are proposed based on linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighbors (kNN), and convolutional neural network (CNN). The proposed models are trained using data from healthy subjects and tested on both healthy subjects and ALS patients. The results show that the fusion of LDA, kNN and SVM provides the most accurate results, achieving the accuracy of 99% for healthy subjects and about 85% for ALS patients.
引用
收藏
页码:5893 / 5896
页数:4
相关论文
共 50 条
  • [1] Ensemble Voting-Based Multichannel EEG Classification in a Subject-Independent P300 Speller
    Mussabayeva, Ayana
    Jamwal, Prashant Kumar
    Akhtar, Muhammad Tahir
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [2] Subject-Independent P300 BCI using Ensemble Classifier, Dynamic Stopping and Adaptive Learning
    Vo, Kha
    Nguyen, Diep N.
    Kha, Ha Hoang
    Dutkiewicz, Eryk
    [J]. GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [3] Transfer Learning for P300 Speller: An Alignment Approach for Cross -subject P300 Data
    Liu, Maohua
    Ahmad, Faraz
    Beyette, Fred R., Jr.
    [J]. SOUTHEASTCON 2024, 2024, : 1438 - 1443
  • [4] Improve P300 Speller Performance by Changing Stimulus Onset Asynchrony (SOA) Without Retraining the Subject-Independent Model
    Xue, Yuqi
    Tang, Jiabei
    He, Feng
    Xu, Minpeng
    Qi, Hongzhi
    [J]. IEEE ACCESS, 2019, 7 : 134137 - 134144
  • [5] Ensemble SWLDA Classifiers for the P300 Speller
    Johnson, Garett D.
    Krusienski, Dean J.
    [J]. HUMAN-COMPUTER INTERACTION, PT II, 2009, 5611 : 551 - 557
  • [6] Learning Adaptive Subject-independent P300 Models for EEG-based Brain-Computer Interfaces
    Lu, Shijian
    Guan, Cuntai
    Zbang, Haihong
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2461 - 2465
  • [7] A Direct Optimization Approach to the P300 Speller
    Santana, Roberto
    Muelas, Santiago
    LaTorre, Antonio
    Pena, Jose M.
    [J]. GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1747 - 1754
  • [8] Robust Subject-Independent P300 Waveform Classification via Signal Pre-Processing and Deep Learning
    Sahay, Rajeev
    Brinton, Christopher G.
    [J]. IEEE ACCESS, 2021, 9 : 87579 - 87591
  • [9] Subject-Independent Wearable P300 Brain-Computer Interface Based on Convolutional Neural Network and Metric Learning
    Hu, Li
    Gao, Wei
    Lu, Zilin
    Shan, Chun
    Ma, Haiwei
    Zhang, Wenyu
    Li, Yuanqing
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 3543 - 3553
  • [10] A Stacked Autoencoders Approach for a P300 Speller BCI
    Ghazikhani, Hamed
    Rouhani, Modjtaba
    [J]. 2018 8TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2018, : 1 - 6