Genus one Belyi maps by quadratic correspondences

被引:1
|
作者
Vidunas, Raimundas [1 ]
He, Yang-Hui [2 ,3 ,4 ]
机构
[1] Vilnius Univ, Inst Appl Math, Fac Math & Informat, Vilnius, Lithuania
[2] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[3] City Univ London, Dept Math, London EC1V 0HB, England
[4] Univ Oxford, Merton Coll, Oxford OX1 4JD, England
基金
英国科学技术设施理事会;
关键词
Dessins d'Enfant; elliptic curves; brane tilings; PAINLEVE;
D O I
10.1142/S0129167X20500342
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a method of obtaining a Belyi map on an elliptic curve from that on the Riemann sphere. This is done by writing the former as a radical of the latter, which we call a quadratic correspondence, with the radical determining the elliptic curve. With a host of examples of various degrees, we demonstrate that the correspondence is an efficient way of obtaining genus one Belyi maps. As applications, we find the Belyi maps for the dessins d'enfant which have arisen as brane-tilings in the physics community, including ones, such as the so-called suspended pinched point, which have been a standing challenge for a number of years.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Composite genus one Belyi maps
    Vidunas, Raimundas
    He, Yang-Hui
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (03): : 916 - 947
  • [2] Separated Belyi maps
    Scherr, Zachary
    Zieve, Michael E.
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (06) : 1389 - 1406
  • [3] Computing Euclidean Belyi maps
    Radosevich, Matthew
    Voight, John
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 543 - 565
  • [4] Quadratic perturbations of a quadratic reversible center of genus one
    Peng, Linping
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (05) : 911 - 930
  • [5] Quadratic perturbations of a quadratic reversible center of genus one
    Linping Peng
    Frontiers of Mathematics in China, 2011, 6 : 911 - 930
  • [6] PERTURBATIONS OF QUADRATIC CENTERS OF GENUS ONE
    Gautier, Sebastien
    Gavrilov, Lubomir
    Iliev, Iliya D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (02) : 511 - 535
  • [7] Dynamics of quadratic correspondences
    Bullett, Shaun
    NONLINEARITY, 1988, 1 (01) : 27 - 50
  • [8] On the Belyi functions of planar circular maps
    Deryagina M.A.
    Mednykh A.D.
    Journal of Mathematical Sciences, 2015, 209 (2) : 237 - 257
  • [9] Quadratic perturbations of a class of quadratic reversible center of genus one
    HaiHua Liang
    KuiLin Wu
    YuLin Zhao
    Science China Mathematics, 2013, 56 : 577 - 596
  • [10] Quadratic perturbations of a class of quadratic reversible center of genus one
    LIANG HaiHua
    WU KuiLin
    ZHAO YuLin
    ScienceChina(Mathematics), 2013, 56 (03) : 577 - 596