One-to-one ensemble mechanism for decomposition-based multi-Objective optimization

被引:16
|
作者
Lin, Anping [1 ]
Yu, Peiwen [2 ]
Cheng, Shi [3 ]
Xing, Lining [4 ,5 ]
机构
[1] Xiangnan Univ, Sch Phys & Elect Elect Engn, Chenzhou 423000, Peoples R China
[2] Guangdong Ocean Univ, Maritime Coll, Zhanjiang 524000, Peoples R China
[3] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Peoples R China
[4] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
[5] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
关键词
Multi-objective optimization; Evolutionary algorithm; Ensemble mechanism; Complicated Pareto set; COVARIANCE-MATRIX ADAPTATION; EVOLUTIONARY ALGORITHM; SELECTION; STRATEGY; MOEA/D; PERFORMANCE;
D O I
10.1016/j.swevo.2021.101007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-objective evolutionary algorithms based on decomposition (MOEA/Ds) have been generally recognized as competitive techniques for solving multi-objective optimization problems (MOPs) with complicated Paretooptimal sets. To date, ensemble methods have been developed for adaptively selecting evolution operators to enhance the performance of MOEA/Ds. However, most established ensemble methods ignore the variance of the characteristics of complicated MOPs throughout both the decision and objective spaces, and subproblems inevitably have distinct characteristics. Keeping these observations in mind, we propose a one-to-one ensemble mechanism, namely OTOEM, for adaptively associating each subproblem of an MOEA/D with a suitable evolution operator, which differs substantially from the established ensemble methods, in which all the subproblems of the MOEA/D are associated with the same evolution operator during each generation. Another novel feature of the OTOEM is that both the local and global credits of an evolutionary operator are considered in measuring its suitability for subproblems. Moreover, an adaptive rule is designed to stimulate evolution operators with higher overall credits to generate more new solutions and guarantee the continuity of the covariance matrix adaptation evolution strategy. The performance of the proposed OTOEM is evaluated by comparing it with eleven baseline MOEAs on 26 complicated MOPs, and empirical results demonstrate its powerful performance in terms of two widely used metrics, namely, the inverted generational distance and hypervolume.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Ensemble of selection operators for decomposition-based multi-objective evolutionary optimization
    Hong, Rui
    Xing, Lining
    Zhang, Guoting
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [2] Development of ensemble learning classification with density peak decomposition-based evolutionary multi-objective optimization
    SeyedEhsan Roshan
    Shahrokh Asadi
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 1737 - 1751
  • [3] Development of ensemble learning classification with density peak decomposition-based evolutionary multi-objective optimization
    Roshan, SeyedEhsan
    Asadi, Shahrokh
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (06) : 1737 - 1751
  • [4] A decomposition-based archiving approach for multi-objective evolutionary optimization
    Zhang, Yong
    Gong, Dun-wei
    Sun, Jian-yong
    Qu, Bo-yang
    INFORMATION SCIENCES, 2018, 430 : 397 - 413
  • [5] A Decomposition-Based Evolutionary Algorithm for Multi-modal Multi-objective Optimization
    Tanabe, Ryoji
    Ishibuchi, Hisao
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT I, 2018, 11101 : 249 - 261
  • [6] Decomposition-based multi-objective optimization approach for PPI network alignment
    Menor-Flores, Manuel
    Vega-Rodriguez, Miguel A.
    KNOWLEDGE-BASED SYSTEMS, 2022, 243
  • [7] A Decomposition-based Approach for Knee Solution Approximation in Multi-objective Optimization
    Sudeng, Sufian
    Wattanapongsakorn, Naruemon
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3710 - 3717
  • [8] A REGION DECOMPOSITION-BASED MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ALGORITHM
    Chen, Lei
    Liu, Hai-Lin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (08)
  • [9] A Decomposition-based Multi-objective Particle Swarm Optimization Algorithm for Continuous Optimization Problems
    Peng, Wei
    Zhang, Qingfu
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 534 - +
  • [10] A Decomposition-based Hybrid Evolutionary Algorithm for Multi-modal Multi-objective Optimization
    Peng, Yiming
    Ishibuchi, Hisao
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 160 - 167