A proof of the Lewy-Stampacchia's inequality by a penalization method

被引:10
|
作者
Mokrane, A
Murat, F
机构
[1] Ecole Normale Super, Dept Math, Algiers 16050, Algeria
[2] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
关键词
variational inequalities; penalization; Lewy-Stampacchia's inequality;
D O I
10.1023/A:1008649609888
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the Lewy-Stampacchia's inequality for elliptic variational inequalities with obstacle involving fairly general Leray-Lions operators. The main novelty of the paper is the method of proof, which uses the natural penalization. One of the steps of the proof consists in proving, again thanks to the natural penalization, that the nonnegative cone of W-0(1,p) (Omega) is dense in the nonnegative cone of W--1,W-p' (Omega).
引用
收藏
页码:105 / 142
页数:38
相关论文
共 50 条
  • [1] The abstract Lewy-Stampacchia inequality and application
    Gigli, Nicola
    Mosconi, Sunra
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (02): : 258 - 275
  • [2] Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem
    Guibe, Olivier
    Mokrane, A.
    Tahraoui, Y.
    Vallet, G.
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 591 - 612
  • [3] Lewy-Stampacchia inequality for noncoercive parabolic obstacle problems?
    Farroni, Fernando
    Moscariello, Gioconda
    Zecca, Gabriella
    MATHEMATICS IN ENGINEERING, 2023, 5 (04): : 1 - 23
  • [4] A Proof of the Lewy-Stampacchina's Inequality by a Penalization Method
    A. Mokrane
    F. Murat
    Potential Analysis, 1998, 9 : 105 - 142
  • [5] A LEWY-STAMPACCHIA INEQUALITY IN VARIABLE SOBOLEV SPACES FOR PSEUDOMONOTONE OPERATORS
    Mokrane, A.
    Vallet, G.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2014, 6 (02): : 233 - 254
  • [6] LEWY-STAMPACCHIA'S INEQUALITY FOR THE BILATERAL OBSTACLE PROBLEM AND THE QUADRATIC OBSTACLE PROBLEM
    Mokrane, Abdelhafid
    Murat, Francois
    MATEMATICHE, 2005, 60 (02): : 299 - 314
  • [7] The Lewy-Stampacchia inequality for the obstacle problem with quadratic growth in the gradient
    Mokrane, A.
    Murat, F.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (03) : 347 - 360
  • [8] Lewy-Stampacchia's inequality for a stochastic T-monotone obstacle problem
    Tahraoui, Yassine
    Vallet, Guy
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2022, 10 (01): : 90 - 125
  • [9] Lewy-Stampacchia's inequality for a Leray-Lions operator with natural growth in the gradient
    Mokrane A.
    Murat F.
    Bollettino dell'Unione Matematica Italiana, 2014, 7 (1) : 55 - 85
  • [10] THE LEWY-STAMPACCHIA INEQUALITY FOR THE FRACTIONAL LAPLACIAN AND ITS APPLICATION TO ANOMALOUS UNIDIRECTIONAL DIFFUSION EQUATIONS
    Kow, Pu-Zhao
    Kimura, Masato
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (06): : 2935 - 2957