Renyi Fair Information Bottleneck for Image Classification

被引:1
|
作者
Gronowski, Adam [1 ]
Paul, William [2 ]
Alajaji, Fady [1 ]
Gharesifard, Bahman [3 ]
Burlina, Philippe [2 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON, Canada
[2] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
[3] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA USA
基金
加拿大自然科学与工程研究理事会;
关键词
DIVERGENCE;
D O I
10.1109/CWIT55308.2022.9817669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We develop a novel method for ensuring fairness in machine learning which we term as the Renyi Fair Information Bottleneck (RFIB). We consider two different fairness constraints - demographic parity and equalized odds - for learning fair representations and derive a loss function via a variational approach that uses Renyi's divergence with its tunable parameter alpha and that takes into account the triple constraints of utility, fairness, and compactness of representation. We then evaluate the performance of our method for image classification using the EyePACS medical imaging dataset, showing it outperforms competing state of the art techniques with performance measured using a variety of compound utility/fairness metrics, including accuracy gap and Rawls' minimal accuracy.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 50 条
  • [1] Information bottleneck disentanglement based sparse representation for fair classification
    Lu, Xiongbo
    Rong, Yi
    Chen, Yaxiong
    Xiong, Shengwu
    [J]. PATTERN RECOGNITION LETTERS, 2023, 174 : 85 - 91
  • [2] An Information Bottleneck Problem with Renyi's Entropy
    Weng, Jian-Jia
    Alajaji, Fady
    Linder, Tamas
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2489 - 2494
  • [3] Utilizing Information Bottleneck to Evaluate the Capability of Deep Neural Networks for Image Classification
    Cheng, Hao
    Lian, Dongze
    Gao, Shenghua
    Geng, Yanlin
    [J]. ENTROPY, 2019, 21 (05)
  • [4] Learning Bottleneck Concepts in Image Classification
    Wang, Bowen
    Li, Liangzhi
    Nakashima, Lizyuta
    Nagahara, Hajime
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10962 - 10971
  • [5] Deep Bottleneck Feature for Image Classification
    Song, Yan
    McloughLin, Ian
    Dai, Lirong
    [J]. ICMR'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2015, : 491 - 494
  • [6] Distributed Semi-Private Image Classification Based on Information-Bottleneck Principle
    Rezaeifar, Shideh
    Diephuis, Maurits
    Razeghi, Behrooz
    Ullmann, Denis
    Taran, Olga
    Voloshynovskiy, Slava
    [J]. 28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 755 - 759
  • [7] Information Bottleneck Classification in Extremely Distributed Systems
    Ullmann, Denis
    Rezaeifar, Shideh
    Taran, Olga
    Holotyak, Taras
    Panos, Brandon
    Voloshynovskiy, Slava
    [J]. ENTROPY, 2020, 22 (11) : 1 - 30
  • [8] Image Segmentation Using Information Bottleneck Method
    Bardera, Anton
    Rigau, Jaume
    Boada, Imma
    Feixas, Miquel
    Sbert, Mateu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (07) : 1601 - 1612
  • [9] Variational Information Bottleneck for Semi-Supervised Classification
    Voloshynovskiy, Slava
    Taran, Olga
    Kondah, Mouad
    Holotyak, Taras
    Rezende, Danilo
    [J]. ENTROPY, 2020, 22 (09)
  • [10] Information Bottleneck Measurement for Compressed Sensing Image Reconstruction
    Lee, Bokyeung
    Ko, Kyungdeuk
    Hong, Jonghwan
    Ku, Bonhwa
    Ko, Hanseok
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1943 - 1947