Regression-Based 3D Hand Pose Estimation for Human-Robot Interaction

被引:1
|
作者
Bandi, Chaitanya [1 ]
Thomas, Ulrike [1 ]
机构
[1] Tech Univ Chemnitz, D-09126 Chemnitz, Germany
关键词
Regression; HRI; Pose; Region of interest;
D O I
10.1007/978-3-030-94893-1_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In shared workspaces where humans and robots interact, a significant task is to hand over objects. The process of hand over needs to be reliable, a human must not be injured during the process, hence reliable tracking of human hands is necessary. To avoid collision, we apply an encoder-decoder based 2D and 3D key-point regression network on color images. In this paper, we introduce a complete pipeline with the idea of stacked and cascaded convolutional neural networks and tune the parameters of the network for real-time applications. Experiments are conducted on multiple datasets, with low and high occlusions and we evaluate the trained models on multiple datasets for the human-robot interaction test set.
引用
收藏
页码:507 / 529
页数:23
相关论文
共 50 条
  • [1] Dynamic Hand Gesture Recognition Based on 3D Hand Pose Estimation for Human-Robot Interaction
    Gao, Qing
    Chen, Yongquan
    Ju, Zhaojie
    Liang, Yi
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (18) : 17421 - 17430
  • [2] Regression-based 3D Hand Pose Estimation using Heatmaps
    Bandi, Chaitanya
    Thomas, Ulrike
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 636 - 643
  • [3] 3D Hand and Object Pose Estimation for Real-time Human-robot Interaction
    Bandi, Chaitanya
    Kisner, Hannes
    Thomas, Urike
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 770 - 780
  • [4] Regression-Based Determination of Execution Times in Human-Robot Interaction
    Jansing, Steffen
    Jung, Lena
    Hoffmann, Florian
    Deuse, Jochen
    [J]. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2024, 119 (06): : 440 - 444
  • [5] Detecting and tracking of 3D face pose for human-robot interaction
    Dornaika, Fadi
    Raducanu, Bogdan
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-9, 2008, : 1716 - +
  • [6] A Human-robot Interaction Interface for Mobile and Stationary Robots based on Real-time 3D Human Body and Hand-finger Pose Estimation
    Ehlers, Kristian
    Brama, Konstantin
    [J]. 2016 IEEE 21ST INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2016,
  • [7] Dense 3D Regression for Hand Pose Estimation
    Wan, Chengde
    Probst, Thomas
    Van Gool, Luc
    Yao, Angela
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5147 - 5156
  • [8] Regression-based convolutional 3D pose estimation from single image
    Ershadi-Nasab, S.
    Kasaei, S.
    Sanaei, E.
    [J]. ELECTRONICS LETTERS, 2018, 54 (05) : 292 - 293
  • [9] User-Adaptable Hand Pose Estimation Technique for Human-Robot Interaction
    Causo, Albert
    Ueda, Etsuko
    Takemura, Kentaro
    Matsumoto, Yoshio
    Takamatsu, Jun
    Ogasawara, Tsukasa
    [J]. JOURNAL OF ROBOTICS AND MECHATRONICS, 2009, 21 (06) : 739 - 748
  • [10] Classification of Hand Postures Based on 3D Vision Model for Human-Robot Interaction
    Takimoto, Hironori
    Yoshimori, Seiki
    Mitsukura, Yasue
    Fukumi, Minoru
    [J]. 2010 IEEE RO-MAN, 2010, : 292 - 297