Homogenization and error estimates of free boundary velocities in periodic media

被引:0
|
作者
Kim, Inwon C. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
nonlinear PDEs; homogenization; free boundary problems; VISCOSITY SOLUTIONS; FLAME PROPAGATION; CONVERGENCE; RATES; MODEL;
D O I
10.1080/00036811.2011.635655
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we describe a recent result [I.C. Kim, Homogenization of a model problem on contact angle dynamics, Comm. Partial Diff. Eqns. 33(7-9), (2008), pp. 1235-1271; I.C. Kim, Error estimates on homogenization of free boundary velocities in periodic media, Ann. Inst. H. Poincar, Anal. Non-Lineaire 26(3) (2009), pp. 99-1019] on homogenization and error estimates of a free boundary problem, which describes quasi-static contact angle dynamics on inhomogeneous surface. The method presented here also applies to more general class of free boundary problems with oscillating boundary velocities.
引用
收藏
页码:1177 / 1187
页数:11
相关论文
共 50 条
  • [1] Error estimates on homogenization of free boundary velocities in periodic media
    Kim, Inwon C.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03): : 999 - 1019
  • [2] Homogenization Error Estimates for a Periodic Beltrami Equation
    M. M. Sirazhudinov
    S. V. Tikhomirova
    [J]. Differential Equations, 2020, 56 : 1604 - 1612
  • [3] Homogenization Error Estimates for a Periodic Beltrami Equation
    Sirazhudinov, M. M.
    Tikhomirova, S. V.
    [J]. DIFFERENTIAL EQUATIONS, 2020, 56 (12) : 1604 - 1612
  • [4] On operator error estimates for homogenization of hyperbolic systems with periodic coefficients
    Meshkova, Yulia M.
    [J]. JOURNAL OF SPECTRAL THEORY, 2021, 11 (02) : 587 - 660
  • [5] Error estimates for periodic homogenization with non-smooth coefficients
    Onofrei, D.
    Vernescu, B.
    [J]. ASYMPTOTIC ANALYSIS, 2007, 54 (1-2) : 103 - 123
  • [6] OPERATOR ERROR ESTIMATES IN THE HOMOGENIZATION PROBLEM FOR NONSTATIONARY PERIODIC EQUATIONS
    Birman, M. Sh.
    Suslina, T. A.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2009, 20 (06) : 873 - 928
  • [7] Error estimates in periodic homogenization with a non-homogeneous Dirichlet condition
    Griso, G.
    [J]. ASYMPTOTIC ANALYSIS, 2014, 87 (1-2) : 91 - 121
  • [8] Weakly periodic boundary conditions for the homogenization of flow in porous media
    Sandstöm C.
    Larsson F.
    Runesson K.
    [J]. Advanced Modeling and Simulation in Engineering Sciences, 1 (1)
  • [9] Estimates of the modeling error generated by homogenization of an elliptic boundary value problem
    Repin, Sergey
    Samrowski, Tatiana
    Sauter, Stefan
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2016, 24 (01) : 1 - 15
  • [10] Error Estimates of Homogenization Theory
    Song, Wei-Dong
    Ning, Jian-Guo
    Wang, Jing
    Li, Jian-Qiao
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2012, 13 (3-4) : 295 - 298