Methane Pyrolysis for Hydrogen Production: Specific Features of Using Molten Metals

被引:29
|
作者
Parfenov, V. E. [1 ]
Nikitchenko, N., V [1 ]
Pimenov, A. A. [1 ]
Kuz'min, A. E. [2 ]
Kulikova, M., V [2 ]
Chupichev, O. B. [2 ]
Maksimov, A. L. [2 ]
机构
[1] Samara State Tech Univ, Samara 443100, Russia
[2] Russian Acad Sci, Topchiev Inst Petrochem Synth, Moscow 119991, Russia
关键词
pyrolysis; natural gas; hydrogen production; liquid metal bubbling reactors; molten metals; BUBBLE-COLUMN REACTOR; THERMAL-DECOMPOSITION; FOSSIL-FUELS; CO2-FREE HYDROGEN; DIRECT-CONTACT; CARBON; KINETICS; PLASMA; HYDROCARBONS; CRACKING;
D O I
10.1134/S1070427220050018
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Published data on noncatalytic pyrolysis of natural gas in molten metals are analyzed. The most illustrative results obtained in the past two decades are described. The use of molten metals as reaction medium allows solving the problem of coking of pyrolysis reactors owing to the flotation of the carbon formed to the molten metal surface. The use of liquid metal bubbling reactors allowing the process to be performed at temperatures of up to 1200 degrees C is considered. The maximal conversion was 78% at 1175 degrees C and feeding rate of 50 mL min(-1). The major factors favoring more complete conversion of natural gas in the processes under consideration are elevated temperature, decreased gas bubble size due to the use of bubbling systems of various types, and longer residence time of the gas in the heat carrier due to an increase in the reactor length or to use of various types of packing.
引用
收藏
页码:625 / 632
页数:8
相关论文
共 50 条
  • [1] Methane Pyrolysis for Hydrogen Production: Specific Features of Using Molten Metals
    V. E. Parfenov
    N. V. Nikitchenko
    A. A. Pimenov
    A. E. Kuz’min
    M. V. Kulikova
    O. B. Chupichev
    A. L. Maksimov
    [J]. Russian Journal of Applied Chemistry, 2020, 93 : 625 - 632
  • [2] Hydrogen production by methane pyrolysis in molten binary copper alloys
    Scheiblehner, David
    Neuschitzer, David
    Wibner, Stefan
    Sprung, Andreas
    Antrekowitsch, Helmut
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (16) : 6233 - 6243
  • [3] Hydrogen Production by Methane Pyrolysis in a Molten-Metal Bubble Column
    Zaghloul, Nada
    Kodama, Satoshi
    Sekiguchi, Hidetoshi
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (11) : 1986 - 1993
  • [4] Methane Pyrolysis in Molten Media for Hydrogen Production: A Review of Current Advances
    I. V. Kudinov
    Yu. V. Velikanova
    M. V. Nenashev
    T. F. Amirov
    A. A. Pimenov
    [J]. Petroleum Chemistry, 2023, 63 : 1017 - 1026
  • [5] Methane Pyrolysis in Molten Media for Hydrogen Production: A Review of Current Advances
    Kudinov, I. V.
    Velikanova, Yu. V.
    Nenashev, M. V.
    Amirov, T. F.
    Pimenov, A. A.
    [J]. PETROLEUM CHEMISTRY, 2023, 63 (09) : 1017 - 1026
  • [6] Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis
    Msheik, Malek
    Rodat, Sylvain
    Abanades, Stephane
    [J]. ENERGIES, 2021, 14 (11)
  • [7] Hydrogen Production by Methane Pyrolysis in Molten Cu-Ni-Sn Alloys
    Scheiblehner, David
    Antrekowitsch, Helmut
    Neuschitzer, David
    Wibner, Stefan
    Sprung, Andreas
    [J]. METALS, 2023, 13 (07)
  • [8] Hydrodynamics of molten media bubble columns for hydrogen production through methane pyrolysis
    Okajima, Ryota
    Mitchell, Travis R.
    Leonardi, Christopher R.
    Smart, Simon
    [J]. PHYSICS OF FLUIDS, 2024, 36 (10)
  • [9] Process configurations to lower the temperature of methane pyrolysis in a molten metal bath for hydrogen production
    Abdollahi, Mohammad Reza
    Nathan, Graham J.
    Jafarian, Mehdi
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (100) : 39805 - 39822
  • [10] Numerical modeling of methane pyrolysis in a bubble column of molten catalysts for clean hydrogen production
    Park, Seongmin
    Kim, Mukyeong
    Koo, Yunha
    Kang, Dohyung
    Kim, Yohan
    Park, Jinmo
    Ryu, Changkook
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (20) : 7385 - 7399