Multi-scanner and multi-modal lumbar vertebral body and intervertebral disc segmentation database

被引:7
|
作者
Al Khalil, Yasmina [1 ]
Becherucci, Edoardo A. [2 ]
Kirschke, Jan S. [2 ,3 ]
Karampinos, Dimitrios C. [5 ]
Breeuwer, Marcel [1 ]
Baum, Thomas [2 ]
Sollmann, Nico [2 ,3 ,4 ,6 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[2] Tech Univ Munich, Sch Med, Dept Diagnost & Intervent Neuroradiol, Klinikum Rechts Isar, Munich, Germany
[3] Tech Univ Munich, TUM Neuroimaging Ctr, Klinikum Rechts Isar, Munich, Germany
[4] Univ Hosp Ulm, Dept Diagnost & Intervent Radiol, Ulm, Germany
[5] Tech Univ Munich, Sch Med, Dept Diagnost & Intervent Radiol, Klinikum Rechts Isar, Munich, Germany
[6] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
关键词
LOW-BACK-PAIN; SPINE MRI; DEGENERATION; IMAGES;
D O I
10.1038/s41597-022-01222-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic resonance imaging (MRI) is widely utilized for diagnosing and monitoring of spinal disorders. For a number of applications, particularly those related to quantitative MRI, an essential step towards achieving reliable and objective measurements is the segmentation of the examined structures. Performed manually, such process is time-consuming and prone to errors, posing a bottleneck to its clinical applicability. A more efficient analysis would be achieved by automating a segmentation process. However, routine spine MRI acquisitions pose several challenges for achieving robust and accurate segmentations, due to varying MRI acquisition characteristics occurring in data acquired from different sites. Moreover, heterogeneous annotated datasets, collected from multiple scanners with different pulse sequence protocols, are limited. Thus, we present a manually segmented lumbar spine MRI database containing a wide range of data obtained from multiple scanners and pulse sequences, with segmentations of lumbar vertebral bodies and intervertebral discs. The database is intended for the use in developing and testing of automated lumbar spine segmentation algorithms in multi-domain scenarios.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multi-scanner and multi-modal lumbar vertebral body and intervertebral disc segmentation database
    Yasmina Al Khalil
    Edoardo A. Becherucci
    Jan S. Kirschke
    Dimitrios C. Karampinos
    Marcel Breeuwer
    Thomas Baum
    Nico Sollmann
    Scientific Data, 9
  • [2] MAS-Net:Multi-modal Assistant Segmentation Network For Lumbar Intervertebral Disc
    Du, Qinhong
    He, Yue
    Bu, Wendong
    Du, Yukun
    Yang, Huan
    Xi, Yongming
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (17):
  • [3] A ConvMixEst and Multi-attention UNet for Intervertebral Disc Segmentation in Multi-modal MRI
    Lu, Sipei
    Liu, Hanqiang
    Guo, Xiangkai
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 14090 LNAI : 137 - 146
  • [4] A ConvMixEst and Multi-attention UNet for Intervertebral Disc Segmentation in Multi-modal MRI
    Lu, Sipei
    Liu, Hanqiang
    Guo, Xiangkai
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 137 - 146
  • [5] Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images
    Das, Pabitra
    Pal, Chandrajit
    Acharyya, Amit
    Chakrabarti, Amlan
    Basu, Saumyajit
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 205
  • [6] Multi-modal RGB–Depth–Thermal Human Body Segmentation
    Cristina Palmero
    Albert Clapés
    Chris Bahnsen
    Andreas Møgelmose
    Thomas B. Moeslund
    Sergio Escalera
    International Journal of Computer Vision, 2016, 118 : 217 - 239
  • [7] Multi-Modal Emotional Database: AvID
    Gajsek, Rok
    Struc, Vitomir
    Mihelic, France
    Podlesek, Anja
    Komidar, Luka
    Socan, Gregor
    Bajec, Bostjan
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2009, 33 (01): : 101 - 106
  • [8] Multi-modal Complete Breast Segmentation
    Zolfagharnasab, Hooshiar
    Monteiro, Joao P.
    Teixeira, Joao F.
    Borlinhas, Filipa
    Oliveira, Helder P.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017), 2017, 10255 : 519 - 527
  • [9] Multi-modal semantic image segmentation
    Pemasiri, Akila
    Kien Nguyen
    Sridharan, Sridha
    Fookes, Clinton
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 202
  • [10] Multi-modal body part segmentation of infants using deep learning
    Voss, Florian
    Brechmann, Noah
    Lyra, Simon
    Rixen, Joeran
    Leonhardt, Steffen
    Antink, Christoph Hoog
    BIOMEDICAL ENGINEERING ONLINE, 2023, 22 (01)