Wavelet shrinkage for nonequispaced samples

被引:0
|
作者
Cai, TT [1 ]
Brown, LD
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[2] Univ Penn, Dept Stat, Philadelphia, PA 19104 USA
来源
ANNALS OF STATISTICS | 1998年 / 26卷 / 05期
关键词
wavelets; multiresolution approximation; nonparametric regression; minimax; adaptivity; piecewise Holder class;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Standard wavelet shrinkage procedures for nonparametric regression are restricted to equispaced samples. There, data are transformed into empirical wavelet coefficients and threshold rules are applied to the coefficients. The estimators are obtained via the inverse transform of the denoised wavelet coefficients. In many applications, however, the samples are nonequispaced. It can be shown that these procedures would produce suboptimal estimators if they were applied directly to nonequispaced samples. We propose a wavelet shrinkage procedure for nonequispaced samples. We show that the estimate is adaptive and near optimal. For global estimation, the estimate is within a logarithmic factor of the minimax risk over a wide range of piecewise Holder classes, indeed with a number of discontinuities that grows polynomially fast with the sample size. For estimating a target function at a point, the estimate is optimally adaptive to unknown degree of smoothness within a constant. In addition, the estimate enjoys a smoothness property: if the target function is the zero function, then with probability tending to 1 the estimate is also the zero function.
引用
收藏
页码:1783 / 1799
页数:17
相关论文
共 50 条
  • [1] Block thresholding and wavelet estimation for nonequispaced samples
    Chicken, E
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (01) : 113 - 129
  • [2] Wavelet shrinkage with correlated wavelet coefficients
    Azimifar, Z
    Fieguth, P
    Jernigan, E
    [J]. 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2001, : 162 - 165
  • [3] WAVELET SHRINKAGE - ASYMPTOPIA
    DONOHO, DL
    JOHNSTONE, IM
    KERKYACHARIAN, G
    PICARD, D
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1995, 57 (02): : 301 - 337
  • [4] Λ-neighborhood wavelet shrinkage
    Remenyi, Norbert
    Vidakovic, Brani
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) : 404 - 416
  • [5] Bayesian wavelet shrinkage
    Huerta, Gabriel
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (06): : 668 - 672
  • [6] Wavelet shrinkage denoising using an exponential shrinkage function
    Ji Peng
    Zhang Chenghui
    Wang Jihong
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2007, 16 (02) : 285 - 288
  • [7] Rotationally invariant wavelet shrinkage
    Mrázek, P
    Weickert, J
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2003, 2781 : 156 - 163
  • [8] WAVELET SHRINKAGE - ASYMPTOPIA - DISCUSSION
    SPECKMAN, PL
    MARRON, JS
    SILVERMAN, B
    NASON, G
    WANG, KM
    SEIFERT, B
    GASSER, T
    EFROMOVITCH, S
    NUSSBAUM, M
    WANG, YZ
    VONSACHS, R
    BRILLINGER, DR
    NEUMANN, MH
    HASTIE, T
    FAN, JQ
    ANTONIADIS, A
    BIRGE, L
    CRELLIN, NJ
    MARTIN, MA
    DOUKHAN, P
    ENGEL, J
    GEORGIEV, AA
    LIU, H
    GOOD, IJ
    HALL, P
    PATIL, P
    HERRMANN, E
    KOLACZYK, ED
    LEPSKII, OV
    MAMMEN, E
    SPOKOINY, VG
    LUCIER, B
    MCCULLAGH, P
    MOULIN, P
    MULLER, HG
    OLSHEN, RA
    TSYBAKOV, AB
    WAHBA, G
    WALTER, GG
    TIBSHIRANI, R
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (02) : 337 - 369
  • [9] Adaptive Bayesian wavelet shrinkage
    Chipman, HA
    Kolaczyk, ED
    McCullogh, RE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1413 - 1421
  • [10] Deviation bounds for wavelet shrinkage
    Hong, P
    Birget, JC
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (07) : 1851 - 1858