Verification of Sigmoidal Artificial Neural Networks using iSAT

被引:0
|
作者
Grundt, Dominik [1 ]
Jurj, Sorin Liviu [1 ]
Hagemann, Willem [1 ]
Kroeger, Paul [2 ]
Fraenzle, Martin
机构
[1] German Aerosp Ctr E V DLR, Inst Syst Engn Future Mobil, Oldenburg, Germany
[2] Carl von Ossietzky Univ Oldenburg, Oldenburg, Germany
关键词
D O I
10.4204/EPTCS.361.6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents an approach for verifying the behaviour of nonlinear Artificial Neural Networks (ANNs) found in cyber-physical safety-critical systems. We implement a dedicated interval constraint propagator for the sigmoid function into the SMT solver iSAT and compare this approach with a compositional approach encoding the sigmoid function by basic arithmetic features available in iSAT and an approximating approach. Our experimental results show that the dedicated and the composi-tional approach clearly outperform the approximating approach. Throughout all our benchmarks, the dedicated approach showed an equal or better performance compared to the compositional approach.
引用
收藏
页码:45 / 60
页数:16
相关论文
共 50 条
  • [1] Sigmoidal Function Classes for Feedforward Artificial Neural Networks
    Pravin Chandra
    [J]. Neural Processing Letters, 2003, 18 (3) : 205 - 215
  • [2] Sigmoidal function classes for feedforward artificial neural networks
    Chandra, P
    [J]. NEURAL PROCESSING LETTERS, 2003, 18 (03) : 185 - 195
  • [3] Speaker verification for security systems using artificial neural networks
    Vieira, K
    Wilamowski, B
    Kubichek, R
    [J]. IECON '97 - PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, CONTROL, AND INSTRUMENTATION, VOLS. 1-4, 1997, : 1102 - 1107
  • [4] A Non-Sigmoidal Activation Function for Feedforward Artificial Neural Networks
    Chandra, Pravin
    Ghose, Udayan
    Sood, Apoorvi
    [J]. 2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [5] A New Weight Initialization Method for Sigmoidal Feedforward Artificial Neural Networks
    Sodhi, Sartaj Singh
    Chandra, Pravin
    Tanwar, Sharad
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 291 - 298
  • [6] On the three layer neural networks using sigmoidal functions
    Ciuca, I
    Jitaru, E
    [J]. FOUNDATIONS AND TOOLS FOR NEURAL MODELING, PROCEEDINGS, VOL I, 1999, 1606 : 321 - 329
  • [7] Cascading Neural Networks using Adaptive Sigmoidal Function
    Sharma, Sudhir Kumar
    Chandra, Pravin
    [J]. MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 858 - +
  • [8] A Secure Artificial Intelligence-Enabled Critical Sars Crisis Management Using Random Sigmoidal Artificial Neural Networks
    Jiang, Shiwei
    Hou, Hongwei
    [J]. FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [9] NeVer: a tool for artificial neural networks verification
    Luca Pulina
    Armando Tacchella
    [J]. Annals of Mathematics and Artificial Intelligence, 2011, 62 : 403 - 425
  • [10] NEVER: a tool for artificial neural networks verification
    Pulina, Luca
    Tacchella, Armando
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2011, 62 (3-4) : 403 - 425