A Hybrid Feature Selection Algorithm For Classification Unbalanced Data Processsing

被引:0
|
作者
Zhang, Xue [1 ]
Shi, Zhiguo [1 ]
Liu, Xuan [1 ]
Li, Xueni [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
feature selection; genetic algorithm; unbalanced data;
D O I
10.1109/SmartloT.2018.00030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The performance and accuracy of classifier are affected by the result of feature selection directly. Based on the one-class F-Score feature selection and the improved F-Score feature selection and genetic algorithm, combined with machine learning methods like the K nearest neighbor, support vector machine, random forest, naive Bayes, a hybrid feature selection algorithm is proposed to process the two classification unbalanced data problem and multi classification problem. Compared with the traditional machine learning algorithm, it can search in wider feature space and promote classifier to deal with the characteristics of unbalanced data sets according to heuristic rules, which can handle the problem of unbalanced classification better. The experiment results show that the area under receiver operating characteristic curve for two classifications and the accuracy rate for multi classification problem have been improved compared with other models.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 50 条
  • [1] A hybrid feature selection algorithm for gene expression data classification
    Lu, Huijuan
    Chen, Junying
    Yan, Ke
    Jin, Qun
    Xue, Yu
    Gao, Zhigang
    [J]. NEUROCOMPUTING, 2017, 256 : 56 - 62
  • [2] A Hybrid Algorithm for Feature Selection and Classification
    Sathish, B. R.
    Senthilkumar, Radha
    [J]. JOURNAL OF INTERNET TECHNOLOGY, 2023, 24 (03): : 593 - 602
  • [3] A novel oversampling and feature selection hybrid algorithm for imbalanced data classification
    Feng, Fang
    Li, Kuan-Ching
    Yang, Erfu
    Zhou, Qingguo
    Han, Lihong
    Hussain, Amir
    Cai, Mingjiang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 3231 - 3267
  • [4] A novel oversampling and feature selection hybrid algorithm for imbalanced data classification
    Fang Feng
    Kuan-Ching Li
    Erfu Yang
    Qingguo Zhou
    Lihong Han
    Amir Hussain
    Mingjiang Cai
    [J]. Multimedia Tools and Applications, 2023, 82 : 3231 - 3267
  • [5] A Projected Feature Selection Algorithm for Data Classification
    Yin, Zhiwu
    Huang, Shangteng
    [J]. 2007 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-15, 2007, : 3665 - 3668
  • [6] An efficient feature selection algorithm for hybrid data
    Wang, Feng
    Liang, Jiye
    [J]. NEUROCOMPUTING, 2016, 193 : 33 - 41
  • [7] A hybrid feature selection algorithm for microarray data
    Zheng, Yuefeng
    Li, Ying
    Wang, Gang
    Chen, Yupeng
    Xu, Qian
    Fan, Jiahao
    Cui, Xueting
    [J]. JOURNAL OF SUPERCOMPUTING, 2020, 76 (05): : 3494 - 3526
  • [8] A hybrid feature selection algorithm for microarray data
    Yuefeng Zheng
    Ying Li
    Gang Wang
    Yupeng Chen
    Qian Xu
    Jiahao Fan
    Xueting Cui
    [J]. The Journal of Supercomputing, 2020, 76 : 3494 - 3526
  • [9] A Novel Hybrid Feature Selection Algorithm for Hierarchical Classification
    Lima, Helen C. S. C.
    Otero, Fernando E. B.
    Merschmann, Luiz H. C.
    Souza, Marcone J. F.
    [J]. IEEE ACCESS, 2021, 9 : 127278 - 127292
  • [10] Feature selection using a new hybrid PSO and GA algorithm for classification of hyperspectral data
    He, Mingyi
    Huang, Rui.
    [J]. PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: 50 YEARS' ACHIEVEMENTS, FUTURE DIRECTIONS AND SOCIAL IMPACTS, 2006, : 167 - 170