Robust Designs in Generalized Linear Models: AQuantile Dispersion Graphs Approach

被引:1
|
作者
Das, I. [1 ]
Aggarwal, M. [2 ]
Mukhopadhyay, S. [3 ]
机构
[1] Kumaun Univ, Dept Stat, Almora, India
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Indian Inst Technol, Dept Math, Bombay, Maharashtra, India
关键词
Family of link functions; Kriging; Logistic link; Parameter orthogonality; Standardization; REGRESSION-MODELS; LOGISTIC-MODELS; TRANSFORMATION; PREDICTION; FAMILIES;
D O I
10.1080/03610918.2014.904343
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article studies design selection for generalized linear models (GLMs) using the quantile dispersion graphs (QDGs) approach in the presence of misspecification in the link and/or linear predictor. The uncertainty in the linear predictor is represented by a unknown function and estimated using kriging. For addressing misspecified link functions, a generalized family of link functions is used. Numerical examples are shown to illustrate the proposed methodology.
引用
收藏
页码:2348 / 2370
页数:23
相关论文
共 50 条
  • [1] Robust Inference and Modeling of Mean and Dispersion for Generalized Linear Models
    Ponnet, Jolien
    Segaert, Pieter
    Van Aelst, Stefan
    Verdonck, Tim
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 678 - 689
  • [2] Robust prediction and extrapolation designs for misspecified generalized linear regression models
    Wiens, Douglas P.
    Xu, Xiaojian
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (01) : 30 - 46
  • [3] Robust designs for generalized linear mixed models with possible model misspecification
    Xu, Xiaojian
    Sinha, Sanjoy K.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 210 : 20 - 41
  • [4] Testing in generalized partially linear models: A robust approach
    Boente, Graciela
    Cao, Ricardo
    Gonzalez Manteiga, Wenceslao
    Rodriguez, Daniela
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (01) : 203 - 212
  • [5] Robust designs for generalized linear models with possible overdispersion and misspecified link functions
    Adewale, Adeniyi J.
    Xu, Xiaojian
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 875 - 890
  • [6] Marginally specified generalized linear mixed models: A robust approach
    Mills, JE
    Field, CA
    Dupuis, DJ
    [J]. BIOMETRICS, 2002, 58 (04) : 727 - 734
  • [7] Bayesian Ds-optimal designs for generalized linear models with varying dispersion parameter
    Pinto, Edmilson Rodrigues
    de Leon, Antonio Ponce
    [J]. MODA 8 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2007, : 181 - +
  • [8] Bayesian D-optimal designs for generalized linear models with a varying dispersion parameter
    Pinto, ER
    de Leon, AP
    [J]. MODA 7 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, PROCEEDINGS, 2004, : 143 - 151
  • [9] A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter
    Marazzi, Alfio
    Valdora, Marina
    Yohai, Victor
    Amiguet, Michael
    [J]. TEST, 2019, 28 (01) : 223 - 241
  • [10] A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter
    Alfio Marazzi
    Marina Valdora
    Victor Yohai
    Michael Amiguet
    [J]. TEST, 2019, 28 : 223 - 241