Variational Bayes on Monte Carlo Steroids

被引:0
|
作者
Grover, Aditya [1 ]
Ermon, Stefano [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational approaches are often used to approximate intractable posteriors or normalization constants in hierarchical latent variable models. While often effective in practice, it is known that the approximation error can be arbitrarily large. We propose a new class of bounds on the marginal log-likelihood of directed latent variable models. Our approach relies on random projections to simplify the posterior. In contrast to standard variational methods, our bounds are guaranteed to be tight with high probability. We provide a new approach for learning latent variable models based on optimizing our new bounds on the log-likelihood. We demonstrate empirical improvements on benchmark datasets in vision and language for sigmoid belief networks, where a neural network is used to approximate the posterior.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Transdimensional sequential Monte Carlo using variational Bayes - SMCVB
    McGrory, C. A.
    Pettitt, A. N.
    Titterington, D. M.
    Alston, C. L.
    Kelly, M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 246 - 254
  • [2] Quasi-Monte Carlo Quasi-Newton in Variational Bayes
    Liu, Sifan
    Owen, Art B.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [3] Comparing variational Bayes with Markov chain Monte Carlo for Bayesian computation in neuroimaging
    Nathoo, F. S.
    Lesperance, M. L.
    Lawson, A. B.
    Dean, C. B.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2013, 22 (04) : 398 - 423
  • [4] THE USE OF VARIATIONAL BAYES COMPARED TO MARKOV CHAIN MONTE CARLO IN THE ESTIMATION OF THERMAL PROPERTIES
    Emery, Ashley F.
    [J]. PROCEEDINGS OF THE ASME 2021 HEAT TRANSFER SUMMER CONFERENCE (HT2021), 2021,
  • [5] Cyclical Variational Bayes Monte Carlo for efficient multi-modal posterior distributions evaluation
    Igea, Felipe
    Cicirello, Alice
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 186
  • [6] Variational Consensus Monte Carlo
    Rabinovich, Maxim
    Angelino, Elaine
    Jordan, Michael I.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [7] Variational Sequential Monte Carlo
    Naesseth, Christian A.
    Linderman, Scott W.
    Ranganath, Rajesh
    Blei, David M.
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [8] Variational Monte Carlo in solids
    Fahy, S
    [J]. QUANTUM MONTE CARLO METHODS IN PHYSICS AND CHEMISTRY, 1999, 525 : 101 - 127
  • [9] Streaming Variational Monte Carlo
    Zhao, Yuan
    Nassar, Josue
    Jordan, Ian
    Bugallo, Monica
    Park, Il Memming
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (01) : 1150 - 1161
  • [10] Variational Bayesian Monte Carlo
    Acerbi, Luigi
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31