Learning SMT(LRA) Constraints using SMT Solvers

被引:0
|
作者
Kolb, Samuel [1 ]
Teso, Stefano [1 ]
Passerini, Andrea [2 ]
De Raedt, Luc [1 ]
机构
[1] Katholieke Univ Leuven, Leuven, Belgium
[2] Univ Trento, Trento, Italy
基金
欧盟地平线“2020”;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the problem of learning SMT(LRA) constraints from data. SMT(LRA) extends propositional logic with (in)equalities between numerical variables. Many relevant formal verification problems can be cast as SMT(LRA) instances and SMT(LRA) has supported recent developments in optimization and counting for hybrid Boolean and numerical domains. We introduce SMT(CRA) learning, the task of learning SMT(LRA) formulas from examples of feasible and infeasible instances, and we contribute INCAL, an exact non-greedy algorithm for this setting. Our approach encodes the learning task itself as an SMT(LRA) satisfiability problem that can be solved directly by SMT solvers. INCAL is an incremental algorithm that achieves exact learning by looking only at a small subset of the data, leading to significant speed-ups. We empirically evaluate our approach on both synthetic instances and benchmark problems taken from the SMT-LIB benchmarks repository.
引用
收藏
页码:2333 / 2340
页数:8
相关论文
共 50 条
  • [1] Clustering-Guided SMT(LRA) Learning
    Meywerk, Tim
    Walter, Marcel
    Grosse, Daniel
    Drechsler, Rolf
    [J]. INTEGRATED FORMAL METHODS, IFM 2020, 2020, 12546 : 41 - 59
  • [2] Induction for SMT Solvers
    Reynolds, Andrew
    Kuncak, Viktor
    [J]. VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION (VMCAI 2015), 2015, 8931 : 80 - 98
  • [3] Algorithm selection for SMT MachSMT: Machine Learning Driven Algorithm Selection for SMT Solvers
    Scott, Joseph
    Niemetz, Aina
    Preiner, Mathias
    Nejati, Saeed
    Ganesh, Vijay
    [J]. INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2023, 25 (02) : 219 - 239
  • [4] Lemma learning in SMT on linear constraints
    Yu, Yinlei
    Malik, Sharad
    [J]. THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2006, PROCEEDINGS, 2006, 4121 : 142 - 155
  • [5] Integrating SMT solvers in Rodin
    Deharbe, David
    Fontaine, Pascal
    Guyot, Yoann
    Voisin, Laurent
    [J]. SCIENCE OF COMPUTER PROGRAMMING, 2014, 94 : 130 - 143
  • [6] Symbolic Optimization with SMT Solvers
    Li, Yi
    Albarghouthi, Aws
    Kincaid, Zachary
    Gurfinkel, Arie
    Chechik, Marsha
    [J]. ACM SIGPLAN NOTICES, 2014, 49 (01) : 607 - 618
  • [7] SMT Solvers: Foundations and Applications
    Bjorner, Nikolaj
    [J]. DEPENDABLE SOFTWARE SYSTEMS ENGINEERING, 2016, 45 : 24 - 32
  • [8] Extending Sledgehammer with SMT Solvers
    Blanchette, Jasmin Christian
    Boehme, Sascha
    Paulson, Lawrence C.
    [J]. AUTOMATED DEDUCTION - CADA-23, 2011, 6803 : 116 - +
  • [9] The Proof Complexity of SMT Solvers
    Robere, Robert
    Kolokolova, Antonina
    Ganesh, Vijay
    [J]. COMPUTER AIDED VERIFICATION, CAV 2018, PT II, 2018, 10982 : 275 - 293
  • [10] SMT Solvers for Integer Overflows
    Xiao, Qixue
    Chen, Yu
    Huang, Hui
    Qi, Lanlan
    [J]. 2013 THIRD INTERNATIONAL CONFERENCE ON INSTRUMENTATION & MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC), 2013, : 106 - 113