Spectral Properties of Plasmonic Vertical Nano-Gap Array Resonators

被引:2
|
作者
El-Aasser, Mostafa A. [1 ]
Mahmoud, Safwat A. [2 ]
机构
[1] Ain Shams Univ, Fac Sci, Phys Dept, Cairo 11566, Egypt
[2] Northern Border Univ, Fac Sci, Phys Dept, Ar Ar 73222, Saudi Arabia
关键词
Nanoresonators; Plasmonics; Optical Nanoantenna; Field Enhancement;
D O I
10.1166/jno.2019.2506
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent decades, metallic nanostructured devices have deployed plasmonic resonant excitations to enhance both absorption and field enhancements. The spectral properties of a plasmonic vertical nano-gap resonator is investigated numerically using the finite difference time domain (FDTD) method. A circuit model is proposed to predict the resonance wavelengths at certain dimensions and material for the resonator. The FDTD results are compared with that of the circuit model. Incident electromagnetic wave intensity is enhanced in the resonator, mid in the dielectric layer, to be as high as 450 times. Design curves are obtained to facilitate the construction of gap array resonators at resonance wavelengths in the visible and near-infrared regimes including telecom wavelengths, 1300 and 1500 nm. It is found that the relation between the resonance wavelength and resonator dimensions is linear. The proposed design is simple to be manufactured and quite efficient for various applications e.g., in nanophotonics, surface enhanced Raman spectroscopy, and photovoltaics.
引用
收藏
页码:420 / 424
页数:5
相关论文
共 50 条
  • [1] Preparation and Optical Properties of Polarization-Dependent Nano-Gap Array
    An, Ping
    Ni Haibin
    Cheng Jianxin
    Chang Jianhua
    [J]. ACTA OPTICA SINICA, 2022, 42 (20)
  • [2] A planar plasmonic nano-gap and its array for enhancing light-matter interactions at the nanoscale
    Zhang, Li
    Wang, Ximiao
    Chen, Huanjun
    Liu, Chuan
    Deng, Shaozhi
    [J]. NANOSCALE, 2022, 14 (34) : 12257 - 12264
  • [3] Nano-gap piezoelectric resonators for mechanical RF magnetic field modulation
    White, C. D.
    Piazza, G.
    Stephanou, P. J.
    Pisano, A. P.
    [J]. MICRO-ELECTRO-MECHANICAL SYSTEMS - 2005, 2005, 7 : 411 - 414
  • [4] MATHEMATICAL ANALYSIS OF SURFACE PLASMON RESONANCE BY A NANO-GAP IN THE PLASMONIC METAL
    Lin, Junshan
    Zhang, Hai
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) : 4448 - 4489
  • [5] Design of nano-gap piezoelectric resonators for mechanical RF magnetic field modulation
    White, C. D.
    Piazza, G.
    Stephanou, P. J.
    Pisano, A. P.
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2007, 134 (01) : 239 - 244
  • [6] Characteristics of nano-plasmonic resonators with a gap structure
    Okamoto, Hiroyuki
    Yamaguchi, Kenzo
    Haraguchi, Masanobu
    Okamoto, Toshihiro
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 115 (01): : 19 - 23
  • [7] Characteristics of nano-plasmonic resonators with a gap structure
    Hiroyuki Okamoto
    Kenzo Yamaguchi
    Masanobu Haraguchi
    Toshihiro Okamoto
    [J]. Applied Physics A, 2014, 115 : 19 - 23
  • [8] Nano-Gap High Quality Factor Thin Film SOI MEM Resonators
    Grogg, D.
    Tekin, H. C.
    Badila-Ciressan, N. D.
    Tsamados, D.
    Mazza, M.
    Ionescu, A. M.
    [J]. NSTI NANOTECH 2008, VOL 3, TECHNICAL PROCEEDINGS: MICROSYSTEMS, PHOTONICS, SENSORS, FLUIDICS, MODELING, AND SIMULATION, 2008, : 215 - +
  • [9] Determining molecular orientation via single molecule SERS in a plasmonic nano-gap
    Marshall, Addison R. L.
    Stokes, Jamie
    Viscomi, Francesco N.
    Proctor, John E.
    Gierschner, Johannes
    Bouillard, Jean-Sebastien G.
    Adawi, Ali M.
    [J]. NANOSCALE, 2017, 9 (44) : 17415 - 17421
  • [10] Nano-gap Vapor Sensor
    Ghosh, C.
    Khan, S. H.
    Broadbent, S. J.
    Hsieh, H. C.
    Noh, S.
    Banerjee, A.
    Farhoudi, N.
    Mastrangelo, C. H.
    Looper, R.
    Kim, H.
    [J]. 2017 IEEE SENSORS, 2017, : 1206 - 1208