Robust techniques for independent component analysis (ICA) with noisy data

被引:46
|
作者
Cichocki, A
Douglas, SC
Amari, S
机构
[1] RIKEN, Brain Sci Inst, Brain Informat Proc Grp, Wako, Saitama 351198, Japan
[2] Univ Utah, Dept Elect Engn, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
independent component analysis (ICA); bias removal; noise cancellation; natural gradient; blind source separation; maximum likelihood;
D O I
10.1016/S0925-2312(98)00052-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this contribution, we propose approaches to independent component analysis (ICA) when the measured signals are contaminated by additive noise. We extend existing adaptive algorithms with equivariant properties in order to considerably reduce the bias in the demixing matrix caused by measurement noise. Moreover, we describe a novel recurrent dynamic neural network for simultaneous estimation of the unknown mixing matrix, blind source separation, and reduction of noise in the extracted output signals. We discuss the optimal choice of nonlinear activation functions for various noise distributions assuming a generalized Gaussian-distributed noise model. Computer simulations of a selected approach are provided that confirm its usefulness and excellent performance. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:113 / 129
页数:17
相关论文
共 50 条
  • [1] Independent component analysis for noisy data - MEG data analysis
    Ikeda, S
    Toyama, K
    [J]. NEURAL NETWORKS, 2000, 13 (10) : 1063 - 1074
  • [2] Independent component ordering in ICA analysis of financial data
    Lai, ZB
    Cheung, YM
    Xu, L
    [J]. COMPUTATIONAL FINANCE 1999, 2000, : 201 - +
  • [3] A Robust Independent Component Analysis (ICA) Model for Functional Magnetic Resonance Imaging (fMRI) Data
    Ao, Jingqi
    Mitra, Sunanda
    Liu, Zheng
    Nutter, Brian
    [J]. MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963
  • [4] Robust edge detection by independent component analysis in noisy images
    Han, XH
    Chen, YW
    Nakao, Z
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (09): : 2204 - 2211
  • [5] A Robust Adaptive Filtering Method based on Independent Component Analysis (ICA)
    Tuta, Leontin
    Nicolaescu, Mircea
    Rosu, Georgiana
    Grivei, Alexandru
    Barbulescu, Bogdan
    [J]. 2020 13TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2020, : 59 - 64
  • [6] Robust data processing of noisy marine controlled-source electromagnetic data using independent component analysis
    Imamura, Naoto
    Goto, Tada-nori
    Kasaya, Takafumi
    Machiyama, Hideaki
    [J]. EXPLORATION GEOPHYSICS, 2018, 49 (01) : 21 - 29
  • [7] Robust processing of microarray data by independent component analysis
    Díaz, F
    Malutan, R
    Gómez, P
    Rodellar, V
    Puntonet, CG
    [J]. COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 1051 - 1058
  • [8] ICA on noisy data: A factor analysis approach
    Ikeda, S
    [J]. ADVANCES IN INDEPENDENT COMPONENT ANALYSIS, 2000, : 201 - 215
  • [9] A noisy nonlinear independent component analysis
    Ma, S
    Ishii, S
    [J]. MACHINE LEARNING FOR SIGNAL PROCESSING XIV, 2004, : 173 - 182
  • [10] Consistent noisy independent component analysis
    Bonhomme, Stephane
    Robin, Jean-Marc
    [J]. JOURNAL OF ECONOMETRICS, 2009, 149 (01) : 12 - 25