Optimal Bayesian classifier for land cover classification using Landsat TM data

被引:0
|
作者
Zhu, YX [1 ]
Zhao, YX [1 ]
Palaniappan, K [1 ]
Zhou, XB [1 ]
Zhuang, XH [1 ]
机构
[1] Univ Missouri, Dept Comp Sci & Comp Engn, Multimedia Commun & Visualizat Lab, Columbia, MO 65211 USA
关键词
D O I
暂无
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
An optimal Bayesian classifier using mixture distribution class models with joint learning of loss and prior probability functions is proposed for automatic land cover classification. The probability distribution for each land cover class is more realistically modeled as a population of Gaussian mixture densities. A novel two-stage learning algorithm is proposed to learn the Gaussian mixture model parameters for each land cover class and the optimal Bayesian classifier that minimizes the loss due to misclassification. In the first stage, the Gaussian mixture model parameters for a given land cover class is learned using the Expectation-Maximization algorithm. The Minimum Description Length principle is used to automatically determine the number of Gaussian components required in the mixture model without overfitting. In the second stage, the loss functions and the a priori probabilities are jointly learned using a multiclass perceptron algorithm. Preliminary results indicate that modeling the multispectral, multitemporal remotely sensed radiance data for land cover using a Gaussian mixture model is superior to using unimodal Gaussian distributions. Higher classification accuracies for eight typical land cover categories over one full Landsat scene in central Missouri are demonstrated.
引用
收藏
页码:447 / 450
页数:4
相关论文
共 50 条
  • [1] Land-cover change monitoring with classification trees using Landsat TM and ancillary data
    Rogan, J
    Miller, J
    Stow, D
    Franklin, J
    Levien, L
    Fischer, C
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2003, 69 (07): : 793 - 804
  • [2] Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data
    Guerschman, JP
    Paruelo, JM
    Di Bella, C
    Giallorenzi, MC
    Pacin, F
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (17) : 3381 - 3402
  • [3] PERFORMANCE OF LANDSAT-5TM DATA IN LAND-COVER CLASSIFICATION
    IOKA, M
    KODA, M
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1986, 7 (12) : 1715 - 1728
  • [4] Land Cover Classification Using Landsat 7 Data for Land Sustainability
    Lavanya, K.
    Gondchar, Abhilasha
    Mathew, Irene Maria
    Sarda, Sumitkumar
    Ananda Kumar, S.
    Mahendran, Anand
    Perera, Darshika G.
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2023, 132 (01) : 679 - 697
  • [5] Land Cover Classification Using Landsat 7 Data for Land Sustainability
    K. Lavanya
    Abhilasha Gondchar
    Irene Maria Mathew
    Sumitkumar Sarda
    S. Ananda Kumar
    Anand Mahendran
    Darshika G. Perera
    [J]. Wireless Personal Communications, 2023, 132 : 679 - 697
  • [6] Determination of Land Cover using Landsat TM Imagery
    Genc, Levent
    Sacan, Melis
    Turhan, Hakan
    Asar, Burak
    [J]. JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2010, 16 (03): : 213 - 224
  • [7] Linear Mixture Model Applied to the Land-Cover Classification in an Alluvial Plain Using Landsat TM Data
    Mohammed-Aslam, M. A.
    Rokhmatuloh
    Salem, Z. E.
    Javzandulam, Ts
    [J]. JOURNAL OF ENVIRONMENTAL INFORMATICS, 2006, 7 (02) : 95 - 101
  • [8] Data mining applied for land cover classification using Landsat 8
    dos Santos, Guilherme Domingues
    Francisco, Cristiane Nunes
    de Almeida, Claudia Maria
    [J]. BOLETIM DE CIENCIAS GEODESICAS, 2015, 21 (04): : 706 - 720
  • [9] Aggregative model-based classifier ensemble for improving land-use/cover classification of Landsat TM Images
    Li, Xuecao
    Liu, Xiaoping
    Yu, Le
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (04) : 1481 - 1495
  • [10] Analysis of land cover/use changes using Landsat 5 TM data and indices
    Paria Ettehadi Osgouei
    Sinasi Kaya
    [J]. Environmental Monitoring and Assessment, 2017, 189