Root-n consistent estimation in partly linear regression models

被引:31
|
作者
Schick, A [1 ]
机构
[1] SUNY BINGHAMTON,DEPT MATH SCI,BINGHAMTON,NY 13902
基金
美国国家科学基金会;
关键词
least dispersed regular estimator; least squares spline estimator;
D O I
10.1016/0167-7152(95)00145-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with root-n consistent estimation of the parameter beta in the partly linear regression model Y = beta(T)U + gamma(X) + epsilon, where beta is an element of R(P), gamma is a function on [0, 1](q), the error variable epsilon satisfies E(epsilon\U,X) = O and E(epsilon(2)\U,X) is bounded, and the random vector (U-T,X(T))(T) is R(p) x [0,1](q)-valued. Under an identifiability condition, least squares type estimates of beta are shown to be root-n consistent under mild smoothness assumptions on gamma, h or both, where h(X) E(U\X). No assumption on the distribution of X are imposed. This result improves on a result of Chen (1988).
引用
收藏
页码:353 / 358
页数:6
相关论文
共 50 条